ترغب بنشر مسار تعليمي؟ اضغط هنا

Reference study to characterise plasma and magnetic properties of ultra-cool atmospheres

60   0   0.0 ( 0 )
 نشر من قبل Christiane Helling
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radio and X-ray emission from brown dwarfs suggest that an ionised gas and a magnetic field with a sufficient flux density must be present. We perform a reference study for late M-dwarfs, brown dwarfs and giant gas planet to identify which ultra-cool objects are most susceptible to plasma and magnetic processes. Only thermal ionisation is considered. We utilise the {sc Drift-Phoenix} model grid where the local atmospheric structure is determined by the global parameters T$_{rm eff}$, $log(g)$ and [M/H]. Our results show that it is not unreasonable to expect H$_{alpha}$ or radio emission to origin from Brown Dwarf atmospheres as in particular the rarefied upper parts of the atmospheres can be magnetically coupled despite having low degrees of thermal gas ionisation. Such ultra-cool atmospheres could therefore drive auroral emission without the need for a companions wind or an outgassing moon. The minimum threshold for the magnetic flux density required for electrons and ions to be magnetised is well above typical values of the global magnetic field of a brown dwarf and a giant gas planet. Na$^{+}$, K$^{+}$ and Ca$^{+}$ are the dominating electron donors in low-density atmospheres (low log(g), solar metallicity) independent of T$_{rm eff}$. Mg$^{+}$ and Fe$^{+}$ dominate the thermal ionisation in the inner parts of M-dwarf atmospheres. Molecules remain unimportant for thermal ionisation. Chemical processes (e.g. cloud formation) affecting the most abundant electron donors, Mg and Fe, will have a direct impact on the state of ionisation in ultra-cool atmospheres.



قيم البحث

اقرأ أيضاً

We conducted a global analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey - a prototype of the SPECULOOS transit search conducted with the TRAPPIST-South robotic telescope in Chile from 2011 to 2017 - to estimate the occurrence rate of close-in planets such as TRAPPIST-1b orbiting ultra-cool dwarfs. For this purpose, the photometric data of 40 nearby ultra-cool dwarfs were reanalysed in a self-consistent and fully automated manner starting from the raw images. The pipeline developed specifically for this task generates differential light curves, removes non-planetary photometric features and stellar variability, and searches for transits. It identifies the transits of TRAPPIST-1b and TRAPPIST-1c without any human intervention. To test the pipeline and the potential output of similar surveys, we injected planetary transits into the light curves on a star-by-star basis and tested whether the pipeline is able to detect them. The achieved photometric precision enables us to identify Earth-sized planets orbiting ultra-cool dwarfs as validated by the injection tests. Our planet-injection simulation further suggests a lower limit of 10 per cent on the occurrence rate of planets similar to TRAPPIST-1b with a radius between 1 and 1.3 $R_oplus$ and the orbital period between 1.4 and 1.8 days.
The study of the composition of brown dwarf atmospheres helped to understand their formation and evolution. Similarly, the study of exoplanet atmospheres is expected to constrain their formation and evolutionary states. We use results from 3D simulat ions, kinetic cloud formation and kinetic ion-neutral chemistry to investigate ionisation processes which will affect their atmosphere chemistry: The dayside of super-hot Jupiters is dominated by atomic hydrogen, and not H$_2$O. Such planetary atmospheres exhibit a substantial degree of thermal ionisation and clouds only form on the nightside where lightning leaves chemical tracers (e.g. HCN) for possibly long enough to be detectable. External radiation may cause exoplanets to be enshrouded in a shell of highly ionised, H$_3^+$-forming gas and a weather-driven aurora may emerge. Brown dwarfs enable us to study the role of electron beams for the emergence of an extrasolar, weather-system driven aurora-like chemistry, and the effect of strong magnetic fields on cold atmospheric gases. Electron beams trigger the formation of H$_3^+$ in the upper atmosphere of a brown dwarf (e.g. LSR-J1835) which may react with it to form hydronium, H$_3$O$^+$, as a longer lived chemical tracer. Brown dwarfs and super-hot gas giants may be excellent candidates to search for H$_3$O$^+$ as an H$_3^+$ product.
158 - Ch. Helling 2016
Brown dwarfs and giant gas extrasolar planets have cold atmospheres with a rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud par ticles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field $gg B_{rm Earth}$, a chromosphere and aurorae might form as suggested by radio and X-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g., magnetic field induced star spots.
The analysis of the CoRoT space mission data was performed aiming to test a method that selects, among the several light curves observed, the transiting systems that likely host a low-mass star orbiting the main target. The method identifies stellar companions by fitting a model to the observed transits. Applying this model, that uses equations like Keplers third law and an empirical mass-radius relation, it is possible to estimate the mass and radius of the primary and secondary objects as well as the semimajor axis and inclination angle of the orbit. We focus on how the method can be used in the characterisation of transiting systems having a low-mass stellar companion with no need to be monitored with radial-velocity measurements or ground-based photometric observations. The model, which provides a good estimate of the system parameters, is also useful as a complementary approach to select possible planetary candidates. A list of confirmed binaries together with our estimate of their parameters are presented. The characterisation of the first twelve detected CoRoT exoplanetary systems was also performed and agrees very well with the results of their respective announcement papers. The comparison with confirmed systems validates our method, specially when the radius of the secondary companion is smaller than 1.5 Rjup, in the case of planets, or larger than 2 Rjup, in the case of low-mass stars. Intermediate situations are not conclusive.
Aims.Recent studies have detected linear polarization in L dwarfs in the optical I band. Theoretical models have been developed to explain this polarization. These models predict higher polarization at shorter wavelengths. We discuss the polarization in the R and I band of 4 ultra cool dwarfs. Methods.We report linear polarization measurements of 4 ultra cool dwarfs in the R and I bands using the Intermediate dispersion Spectrograph and Imaging System (ISIS) mounted on the 4.2m William Herschel Telescope (WHT). Results.As predicted by theoretical models, we find a higher degree of polarization in the R band when compared to polarization in the I band for 3/4 of these ultra cool dwarfs. This suggests that dust scattering asymmetry is caused by oblateness >.We also show how these measurements fit the theoretical models. A case for variability of linear polarization is found, which suggests the presence of randomly distributed dust clouds. We also discuss one case for the presence of a cold debris disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا