ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical linear polarization in ultra cool dwarfs: A tool to probe dust in the ultra cool dwarf atmospheres

220   0   0.0 ( 0 )
 نشر من قبل Ramarao Tata
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims.Recent studies have detected linear polarization in L dwarfs in the optical I band. Theoretical models have been developed to explain this polarization. These models predict higher polarization at shorter wavelengths. We discuss the polarization in the R and I band of 4 ultra cool dwarfs. Methods.We report linear polarization measurements of 4 ultra cool dwarfs in the R and I bands using the Intermediate dispersion Spectrograph and Imaging System (ISIS) mounted on the 4.2m William Herschel Telescope (WHT). Results.As predicted by theoretical models, we find a higher degree of polarization in the R band when compared to polarization in the I band for 3/4 of these ultra cool dwarfs. This suggests that dust scattering asymmetry is caused by oblateness >.We also show how these measurements fit the theoretical models. A case for variability of linear polarization is found, which suggests the presence of randomly distributed dust clouds. We also discuss one case for the presence of a cold debris disk.



قيم البحث

اقرأ أيضاً

The 2001 discovery of radio emission from ultra-cool dwarfs (UCDs), the very low-mass stars and brown dwarfs with spectral types of ~M7 and later, revealed that these objects can generate and dissipate powerful magnetic fields. Radio observations pro vide unparalleled insight into UCD magnetism: detections extend to brown dwarfs with temperatures <1000 K, where no other observational probes are effective. The data reveal that UCDs can generate strong (kG) fields, sometimes with a stable dipolar structure; that they can produce and retain nonthermal plasmas with electron acceleration extending to MeV energies; and that they can drive auroral current systems resulting in significant atmospheric energy deposition and powerful, coherent radio bursts. Still to be understood are the underlying dynamo processes, the precise means by which particles are accelerated around these objects, the observed diversity of magnetic phenomenologies, and how all of these factors change as the mass of the central object approaches that of Jupiter. The answers to these questions are doubly important because UCDs are both potential exoplanet hosts, as in the TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.
Observations of radio emission in about 10 per cent of ultra-cool dwarfs (UCDs) indicate the presence of strong, persistent magnetic fields in these stars. These results are in contrast to early theoretical expectations on fully-convective dynamos, a nd to other tracers of magnetic activity, such as H {alpha} and X-ray luminosity. Radio-frequency observations have been key to physically characterising UCD magnetospheres, although explaining the diverse behaviour within them remains challenging. Most radio-frequency studies of UCDs have been conducted in the 4-8 GHz band, where traditional radio interferometers are typically most sensitive. Hence, the nature of UCD radio emission at low frequencies ($lesssim 1.4,mathrm{GHz}$) remains relatively unexplored, but can probe optically thick emission, and regions of lower magnetic field strengths -- regimes not accessible to higher-frequency observations. In this work, we present the results from Giant Metrewave Radio Telescope observations of nine UCDs taken at $sim 610$ and $1300,mathrm{MHz}$. These are the first observations of UCDs in this frequency range to be published in the literature. Using these observations, we are able to constrain the coronal magnetic field strength and electron number density of one of the targets to $1 lesssim B lesssim 90,mathrm{G}$ and $4 lesssim log(N_e) lesssim 10$, respectively. We do not detect the flaring emission observed at higher frequencies, to a limit of a few millijanskys. These results show that some UCDs can produce low-frequency radio emission, and highlights the need for simultaneous multi-wavelength radio observations to tightly constrain the coronal and magnetospheric properties of these stars.
273 - C. Lynch , R. L. Mutel , M. Gudel 2014
A number of radio-loud ultra cool dwarf stars (UCD) exhibit both continuous broadband and highly polarized pulsed radio emission. In order to determine the nature of the emission and the physical characteristics in the source region, we have made mul ti-epoch, wideband spectral observations of TVLM 0513-46 and 2M 0746+20. We combine these observations with archival radio data to fully characterize both the temporal and spectral properties of the radio emission. The continuum spectral energy distribution can be well modeled using gyrosynchrotron emission from mildly relativistic electrons in a dipolar field. The pulsed emission exhibits a variety of time-variable characteristics, including frequency drifts, frequency cutoffs, and multiple pulses per period. For 2M 0746+20 we determine a pulse period consistent with previously determined values. We modeled locations of pulsed emission using an oblique rotating magnetospheric model with beamed electron cyclotron maser (ECM) sources. The best-fit models have narrow ECM beaming angles aligned with the local source magnetic field direction, except for one isolated burst from 2M 0746+20. For TVLM 0513-46, the best-fit rotation axis inclination is nearly orthogonal to the line of sight. For 2M 0746+20 we found a good fit using a fixed inclination i=36 deg, determined from optical observations. For both stars the ECM sources are located near feet of magnetic loops with radial extents 1.2Rs-2.7 Rs and surface fields 2.2 - 2.5 kG. These results support recent suggestions that radio over-luminous UCDs have a global `weak field non-axisymmetric magnetic topologies.
184 - F. Marocco 2020
We present ten new ultra-cool dwarfs in seven wide binary systems discovered using $textit{Gaia}$ DR2 data, identified as part of our $textit{Gaia}$ Ultra-Cool Dwarf Sample project. The seven systems presented here include an L1 companion to the G5 I V star HD 164507, an L1: companion to the V478 Lyr AB system, an L2 companion to the metal-poor K5 V star CD-28 8692, an M9 V companion to the young variable K0 V star LT UMa, and three low-mass binaries consisting of late Ms and early Ls. The HD 164507, CD-28 8692, V478 Lyr, and LT UMa systems are particularly important benchmarks, because the primaries are well characterised and offer excellent constraints on the atmospheric parameters and ages of the companions. We find that the M8 V star 2MASS J23253550+4608163 is $sim$2.5 mag overluminous compared to M dwarfs of similar spectral type, but at the same time it does not exhibit obvious peculiarities in its near-infrared spectrum. Its overluminosity cannot be explained by unresolved binarity alone. Finally, we present an L1+L2 system with a projected physical separation of 959 au, making this the widest L+L binary currently known.
Observations of brown dwarfs provide important feedback on theories of atmospheres and inner structure of substellar objects. Brown dwarf binary systems furthermore offer the unique opportunity to determine the mass of individual brown dwarfs, which is one of the fundamental astrophysical quantities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا