ترغب بنشر مسار تعليمي؟ اضغط هنا

Near Infrared studies during maximum and early decline of Nova Cephei 2014 and Nova Scorpii 2015

65   0   0.0 ( 0 )
 نشر من قبل Mudit K. Srivastava
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present multi-epoch near-infrared photo-spectroscopic observations of Nova Cephei 2014 and Nova Scorpii 2015, discovered in outburst on 2014 March 8.79 UT and 2015 February 11.84 UT respectively. Nova Cep 2014 shows the conventional NIR characteristics of a Fe II class nova characterized by strong CI, HI and O I lines, whereas Nova Sco 2015 is shown to belong to the He/N class with strong He I, HI and OI emission lines. The highlight of the results consists in demonstrating that Nova Sco 2015 is a symbiotic system containing a giant secondary. Leaving aside the T CrB class of recurrent novae, all of which have giant donors, Nova Sco 2015 is shown to be only the third classical nova to be found with a giant secondary. The evidence for the symbiotic nature is three-fold; first is the presence of a strong decelerative shock accompanying the passage of the novas ejecta through the giants wind, second is the H$alpha$ excess seen from the system and third is the spectral energy distribution of the secondary in quiescence typical of a cool late type giant. The evolution of the strength and shape of the emission line profiles shows that the ejecta velocity follows a power law decay with time ($t^{-1.13 pm 0.17}$). A Case B recombination analysis of the H I Brackett lines shows that these lines are affected by optical depth effects for both the novae. Using this analysis we make estimates for both the novae of the emission measure $n_e^2L$, the electron density $n_e$ and the mass of the ejecta.



قيم البحث

اقرأ أيضاً

The recurrent nova (RN) V745 Scorpii underwent its third known outburst on 2014 February 6. Infrared monitoring of the eruption on an almost daily basis, starting from 1.3d after discovery, shows the emergence of a powerful blast wave generated by th e high velocity nova ejecta exceeding 4000 kms$^{-1}$ plowing into its surrounding environment. The temperature of the shocked gas is raised to a high value exceeding 10$^{8}$K immediately after outburst commencement. The energetics of the outburst clearly surpass those of similar symbiotic systems like RS Oph and V407 Cyg which have giant secondaries. The shock does not show a free-expansion stage but rather shows a decelerative Sedov-Taylor phase from the beginning. Such strong shockfronts are known to be sites for $gamma$ ray generation. V745 Sco is the latest nova, apart from five other known novae, to show $gamma$ ray emission. It may be an important testbed to resolve the crucial question whether all novae are generically $gamma$ ray emitters by virtue of having a circumbinary reservoir of material that is shocked by the ejecta rather than $gamma$ ray generation being restricted to only symbiotic systems with a shocked red giant (RG) wind. The lack of a free-expansion stage favors V745 Sco to have a density enhancement around the white dwarf (WD), above that contributed by a RG wind. Our analysis also suggests that the WD in V745 Sco is very massive and a potential progenitor for a future SN Ia explosion.
Near Infrared (NIR) and optical photometry and spectroscopy are presented for the nova V1831 Aquilae, covering the early decline and dust forming phases during the first $sim$90 days after its discovery. The nova is highly reddened due to interstella r extinction. Based solely on the nature of NIR spectrum we are able to classify the nova to be of the Fe II class. The distance and extinction to the nova are estimated to be 6.1 $pm$ 0.5 kpc and $A_{rm v}$ $sim$ 9.02 respectively. Lower limits of the electron density, emission measure and ionized ejecta mass are made from a Case B analysis of the NIR Brackett lines while the neutral gas mass is estimated from the optical [OI] lines. We discuss the cause for a rapid strengthening of the He I 1.0830 $mu$m line during the early stages. V1831 Aql formed a modest amount of dust fairly early ($sim$ 19.2 days after discovery); the dust shell is not seen to be optically thick. Estimates are made of the dust temperature, dust mass and grain size. Dust formation commences around day 19.2 at a condensation temperature of 1461 $pm$ 15 K, suggestive of a carbon composition, following which the temperature is seen to gradually decrease to 950K. The dust mass shows a rapid initial increase which we interpret as being due to an increase in the number of grains, followed by a period of constancy suggesting the absence of grain destruction processes during this latter time. A discussion is made of the evolution of these parameters, including certain peculiarities seen in the grain radius evolution.
We present near-IR observations of the 2010 outburst of U Sco. JHK photometry is presented on ten consecutive days starting from 0.59 days after outburst. Such photometry can gainfully be integrated into a larger database of other multi-wavelength da ta which aim to comprehensively study the evolution of U Sco. Early near-IR spectra, starting from 0.56 days after outburst, are presented and their general characteristics discussed. Early in the eruption, we see very broad wings in several spectral lines, with tails extending up to ~10000km/s along the line of sight; it is unexpected to have a nova with ejection velocities equal to those usually thought to be exclusive to supernovae. From recombination analysis, we estimate an upper limit of 10^-4.64[+0.92.-0.74]Msun for the ejected mass.
Near-IR spectroscopy is presented for Nova Scorpii 2014. It is shown that the outburst occurred in a symbiotic binary system - an extremely rare configuration for a classical nova outburst to occur in but appropriate for the eruption of a recurrent n ova of the T CrB class. We estimate the spectral class of secondary as M5III $pm$ (two sub-classes). The maximum magnitude versus rate of decline (MMRD) relations give an unacceptably large value of 37.5 kpc for the distance. The spectra are typical of the He/N class of novae with strong HeI and H lines. The profiles are broad and flat topped with full width at zero intensities (FWZIs) approaching 9000-10000 km s$^{-1}$ and also have a sharp narrow component superposed which is attributable to emission from the giants wind. Hot shocked gas, accompanied by X-rays and $gamma$ rays, is expected to form when the high velocity ejecta from the nova plows into the surrounding giant wind. Although X-ray emission was observed no $gamma$-ray emission was reported. It is also puzzling that no signature of a decelerating shock is seen in the near-infrared (NIR), seen in similar systems like RS Oph, V745 Sco and V407 Cyg, as rapid narrowing of the line profiles. The small outburst amplitude and the giant secondary strongly suggest that Nova Sco 2014 could be a recurrent nova.
104 - H. Naito , S. Mizoguchi , A. Arai 2012
We present optical ($B$, $V$, $R_{rm c}$, $I_{rm c}$ and $y$) and near infrared ($J$, $H$ and $K_{rm s}$) photometric and spectroscopic observations of a classical nova V1280 Scorpii for five years from 2007 to 2011. Our photometric observations show a declining event in optical bands shortly after the maximum light which continues $sim$ 250 days. The event is most probably caused by a dust formation. The event is accompanied by a short ($sim$ 30 days) re-brightening episode ($sim$ 2.5 mag in $V$), which suggests a re-ignition of the surface nuclear burning. After 2008, the $y$ band observations show a very long plateau at around $y$ = 10.5 for more than 1000 days until April 2011 ($sim$ 1500 days after the maximum light). The nova had taken a very long time ($sim$ 50 months) before entering the nebular phase (clear detection of both [ion{O}{iii}] 4959 and 5007) and is still continuing to generate the wind caused by H-burning. The finding suggests that V1280 Sco is going through the historically slowest evolution. The interval from the maximum light (2007 February 16) to the beginning of the nebular phase is longer than any previously known slow novae: V723 Cas (18 months), RR Pic (10 months), or HR Del (8 months). It suggests that the mass of a white dwarf in the V1280 Sco system might be 0.6 $M_mathrm{sun}$ or smaller. The distance, based on our measurements of the expansion velocity combined with the directly measured size of the dust shell, is estimated to be 1.1 $pm$ 0.5 kpc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا