ﻻ يوجد ملخص باللغة العربية
We analyze 6Li elastic scattering in a wide range of incident energies (Ein), assuming the n + p + alpha + target four-body model and solving the dynamics with the four-body version of the continuum-discretized coupled-channels method (CDCC). Four-body CDCC well reproduces the experimental data with no adjustable parameter for 6Li + 209Bi scattering at Ein = 24-50 MeV and 6Li + 208Pb scattering at Ein = 29-210 MeV. In the wide Ein range, 6Li breakup is significant and provides repulsive corrections to the folding potential. As an interesting property, d breakup is strongly suppressed in 6Li-breakup processes independently of Ein. We investigate what causes the d-breakup suppression.
We investigate projectile breakup effects on 6Li+209Bi elastic scattering near the Coulomb barrier with the four-body version of the continuum-discretized coupled-channel method (four-body CDCC). This is the first application of four-body CDCC to 6Li
We present a new reaction model, which permits the description of reactions where both colliding nuclei present a low threshold to breakup. The method corresponds to a four-body extension of the Continuum Discretized Coupled Channel (CDCC) model. We
We report on a microscopic calculation of n-3H and p-3He scattering employing the Argonne v_{18} and v_8 nucleon-nucleon potentials with and without additional three-nucleon force. An R-matrix analysis of the p-3He and n-3H scattering data is present
The Kohn variational principle and the hyperspherical harmonics technique are applied to study n-3H elastic scattering at low energies. In this contribution the first results obtained using a non-local realistic interaction derived from the chiral pe
We present an ab initio symmetry-adapted no-core shell-model description for $^{6}$Li. We study the structure of the ground state of $^{6}$Li and the impact of the symmetry-guided space selection on the charge density components for this state in mom