ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron-scattering form factors for 6Li in the ab initio symmetry-guided framework

186   0   0.0 ( 0 )
 نشر من قبل Tomas Dytrych
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an ab initio symmetry-adapted no-core shell-model description for $^{6}$Li. We study the structure of the ground state of $^{6}$Li and the impact of the symmetry-guided space selection on the charge density components for this state in momentum space, including the effect of higher shells. We accomplish this by investigating the electron scattering charge form factor for momentum transfers up to $q sim 4$ fm$^{-1}$. We demonstrate that this symmetry-adapted framework can achieve significantly reduced dimensions for equivalent large shell-model spaces while retaining the accuracy of the form factor for any momentum transfer. These new results confirm the previous outcomes for selected spectroscopy observables in light nuclei, such as binding energies, excitation energies, electromagnetic moments, E2 and M1 reduced transition probabilities, as well as point-nucleon matter rms radii.



قيم البحث

اقرأ أيضاً

The electromagnetic responses obtained from Greens function Monte Carlo (GFMC) calculations are based on realistic treatments of nuclear interactions and currents. The main limitations of this method comes from its nonrelativistic nature and its comp utational cost, the latter hampering the direct evaluation of the inclusive cross sections as measured by experiments. We extend the applicability of GFMC in the quasielastic region to intermediate momentum transfers by performing the calculations in a reference frame that minimizes nucleon momenta. Additional relativistic effects in the kinematics are accounted for employing the two-fragment model. In addition, we developed a novel algorithm, based on the concept of first-kind scaling, to compute the inclusive electromagnetic cross section of $^4$He through an accurate and reliable interpolation of the response functions. A very good agreement is obtained between theoretical and experimental cross sections for a variety of kinematical setups. This offers a promising prospect for the data analysis of neutrino-oscillation experiments that requires an accurate description of nuclear dynamics in which relativistic effects are fully accounted for.
A quantitative and predictive microscopic theoretical framework that can describe reactions induced by $alpha$ particles ($^4$He nuclei) and heavier projectiles is currently lacking. Such a framework would contribute to reducing uncertainty in the mo deling of stellar evolution and nucleosynthesis and provide the basis for achieving a comprehensive understanding of the phenomenon of nuclear clustering (the organization of protons and neutrons into distinct substructures within a nucleus). We have developed an efficient and general configuration-interaction framework for the description of low-energy reactions and clustering in light nuclei. The new formalism takes full advantage of powerful second-quantization techniques, enabling the description of $alpha$-$alpha$ scattering and an exploration of clustering in the exotic $^{12}$Be nucleus. We find that the $^4$He($alpha$, $alpha$)$^4$He differential cross section computed with non-locally regulated chiral interactions is in good agreement with experimental data. Our results for $^{12}$Be indicate the presence of strongly mixed helium-cluster states consistent with a molecular-like picture surviving far above the $^6$He+$^6$He threshold, and reveal the strong influence of neutron decay in both the $^{12}$Be spectrum and in the $^6$He($^6$He,$alpha$)$^8$He cross section. We expect that this approach will enable the description of helium burning cross sections and provide insight on how three-nucleon forces influence the emergence of clustering in nuclei.
We present converged ab initio calculations of structure factors for elastic spin-dependent WIMP scattering off all nuclei used in dark matter direct-detection searches: $^{19}$F, $^{23}$Na, $^{27}$Al, $^{29}$Si, $^{73}$Ge, $^{127}$I, and $^{129,131} $Xe. From a set of established two- and three-nucleon interactions derived within chiral effective field theory, we construct consistent WIMP-nucleon currents at the one-body level, including effects from axial-vector two-body currents. We then apply the in-medium similarity renormalization group to construct effective valence-space Hamiltonians and consistently transformed operators of nuclear responses. Combining the recent advances of natural orbitals with three-nucleon forces expressed in large spaces, we obtain basis-space converged structure factors even in heavy nuclei. Generally results are consistent with previous calculations but in certain cases can differ by as much as 80-90% at low momentum transfer.
Low energy capture cross sections are calculated within a microscopic many-body approach using an effective Hamiltonian derived from the Argonne V18 potential. The dynamics is treated within Fermionic Molecular Dynamics (FMD) which uses a Gaussian wa ve-packet basis to represent the many-body states. A phase-shift equivalent effective interaction derived within the Unitary Correlation Operator Method (UCOM) that treats explicitly short-range central and tensor correlations is employed. As a first application the 3He(alpha,gamma)7Be reaction is presented. Within the FMD approach the microscopic many-body wave functions of the 3/2- and 1/2- bound states in 7Be as well as the many-body scattering states in the 1/2+, 3/2+ and 5/2+ channels are calculated as eigenstates of the same microscopic effective Hamiltonian. Finally the S-factor is calculated from E1 transition matrix elements between the many-body scattering and bound states. For 3He(alpha,gamma)7Be the S-factor agrees very well, both in absolute normalization and energy dependence, with the recent experimental data from the Weizmann, LUNA, Seattle and ERNA experiments. For the 3H(alpha,gamma)7Li reaction the calculated S-factor is about 15% above the data.
In this work we present the first steps towards benchmarking isospin symmetry breaking in ab initio nuclear theory for calculations of superallowed Fermi $beta$-decay. Using the valence-space in-medium similarity renormalization group, we calculate b and c coefficients of the isobaric multiplet mass equation, starting from two different Hamiltonians constructed from chiral effective field theory. We compare results to experimental measurements for all T=1 isobaric analogue triplets of relevance to superallowed $beta$-decay for masses A=10 to A=74 and find an overall agreement within approximately 250 keV of experimental data for both b and c coefficients. A greater level of accuracy, however, is obtained by a phenomenological Skyrme interaction or a classical charged-sphere estimate. Finally, we show that evolution of the valence-space operator does not meaningfully improve the quality of the coefficients with respect to experimental data, which indicates that higher-order many-body effects are likely not responsible for the observed discrepancies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا