ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical behavior and the limit distribution for long-range oriented percolation. II: Spatial correlation

190   0   0.0 ( 0 )
 نشر من قبل Akira Sakai
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that the Fourier transform of the properly-scaled normalized two-point function for sufficiently spread-out long-range oriented percolation with index alpha>0 converges to e^{-C|k|^{alphawedge2}} for some Cin(0,infty) above the upper-critical dimension 2(alphawedge2). This answers the open question remained in the previous paper [arXiv:math/0703455]. Moreover, we show that the constant C exhibits crossover at alpha=2, which is a result of interactions among occupied paths. The proof is based on a new method of estimating fractional moments for the spatial variable of the lace-expansion coefficients.

قيم البحث

اقرأ أيضاً

124 - Lung-Chi Chen , Akira Sakai 2010
We consider random walk and self-avoiding walk whose 1-step distribution is given by $D$, and oriented percolation whose bond-occupation probability is proportional to $D$. Suppose that $D(x)$ decays as $|x|^{-d-alpha}$ with $alpha>0$. For random wal k in any dimension $d$ and for self-avoiding walk and critical/subcritical oriented percolation above the common upper-critical dimension $d_{mathrm{c}}equiv2(alphawedge2)$, we prove large-$t$ asymptotics of the gyration radius, which is the average end-to-end distance of random walk/self-avoiding walk of length $t$ or the average spatial size of an oriented percolation cluster at time $t$. This proves the conjecture for long-range self-avoiding walk in [Ann. Inst. H. Poincar{e} Probab. Statist. (2010), to appear] and for long-range oriented percolation in [Probab. Theory Related Fields 142 (2008) 151--188] and [Probab. Theory Related Fields 145 (2009) 435--458].
We consider an inhomogeneous oriented percolation model introduced by de Lima, Rolla and Valesin. In this model, the underlying graph is an oriented rooted tree in which each vertex points to each of its $d$ children with `short edges, and in additio n, each vertex points to each of its $d^k$ descendant at a fixed distance $k$ with `long edges. A bond percolation process is then considered on this graph, with the prescription that independently, short edges are open with probability $p$ and long edges are open with probability $q$. We study the behavior of the critical curve $q_c(p)$: we find the first two terms in the expansion of $q_c(p)$ as $k to infty$, and prove that the critical curve lies strictly above the critical curve of a related branching process, in the relevant parameter region. We also prove limit theorems for the percolation cluster in the supercritical, subcritical and critical regimes.
114 - Akira Sakai , Gordon Slade 2018
Recently, Holmes and Perkins identified conditions which ensure that for a class of critical lattice models the scaling limit of the range is the range of super-Brownian motion. One of their conditions is an estimate on a spatial moment of order high er than four, which they verified for the sixth moment for spread-out lattice trees in dimensions $d>8$. Chen and Sakai have proved the required moment estimate for spread-out critical oriented percolation in dimensions $d+1>4+1$. We prove estimates on all moments for the spread-out critical contact process in dimensions $d>4$, which in particular fulfills the spatial moment condition of Holmes and Perkins. Our method of proof is relatively simple, and, as we show, it applies also to oriented percolation and lattice trees. Via the convergence results of Holmes and Perkins, the upper bounds on the spatial moments can in fact be promoted to asymptotic formulas with explicit constants.
We consider self-avoiding walk, percolation and the Ising model with long and finite range. By means of the lace expansion we prove mean-field behavior for these models if $d>2(alphawedge2)$ for self-avoiding walk and the Ising model, and $d>3(alphaw edge2)$ for percolation, where $d$ denotes the dimension and $alpha$ the power-law decay exponent of the coupling function. We provide a simplified analysis of the lace expansion based on the trigonometric approach in Borgs et al. (2007)
We consider different problems within the general theme of long-range percolation on oriented graphs. Our aim is to settle the so-called truncation question, described as follows. We are given probabilities that certain long-range oriented bonds are open; assuming that the sum of these probabilities is infinite, we ask if the probability of percolation is positive when we truncate the graph, disallowing bonds of range above a possibly large but finite threshold. We give some conditions in which the answer is affirmative. We also translate some of our results on oriented percolation to the context of a long-range contact process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا