ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning the van der Waals Interaction of Graphene with Molecules via Doping

285   0   0.0 ( 0 )
 نشر من قبل Felix Huttmann
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use scanning tunneling microscopy to visualize and thermal desorption spectroscopy to quantitatively measure that the binding of naphthalene molecules to graphene (Gr), a case of pure van der Waals (vdW) interaction, strengthens with $n$- and weakens with $p$-doping of Gr. Density functional theory calculations that include the vdW interaction in a seamless, ab initio way accurately reproduce the observed trend in binding energies. Based on a model calculation, we propose that the vdW interaction is modified by changing the spatial extent of Grs $pi$ orbitals via doping.



قيم البحث

اقرأ أيضاً

We aim to understand how the van der Waals force between neutral adatoms and a graphene layer is modified by uniaxial strain and electron correlation effects. A detailed analysis is presented for three atoms (He, H, and Na) and graphene strain rangin g from weak to moderately strong. We show that the van der Waals potential can be significantly enhanced by strain, and present applications of our results to the problem of elastic scattering of atoms from graphene. In particular we find that quantum reflection can be significantly suppressed by strain, meaning that dissipative inelastic effects near the surface become of increased importance. Furthermore we introduce a method to independently estimate the Lennard-Jones parameters used in an effective model of He interacting with graphene, and determine how they depend on strain. At short distances, we find that strain tends to reduce the interaction strength by pushing the location of the adsorption potential minima to higher distances above the deformed graphene sheet. This opens up the exciting possibility of mechanically engineering an adsorption potential, with implications for the formation and observation of anisotropic low dimensional superfluid phases.
The adsorption of fluorine, chlorine, bromine, and iodine diatomic molecules on graphene has been investigated using density functional theory with taking into account nonlocal correlation effects by means of vdW-DF approach. It is shown that the van der Waals interaction plays a crucial role in the formation of chemical bonding between graphene and halogen molecules, and is therefore important for a proper description of adsorption in this system. In-plane orientation of the molecules has been found to be more stable than the orientation perpendicular to the graphene layer. In the cases of F$_2$, Br$_2$ and I$_2$ we also found an ionic contribution to the binding energy, slowly vanishing with distance. Analysis of the electronic structure shows that ionic interaction arises due to the charge transfer from graphene to the molecules. Furthermore, we found that the increase of impurity concentration leads to the conduction band formation in graphene due to interaction between halogen molecules. In addition, graphite intercalation by halogen molecules has been investigated. In the presence of halogen molecules the binding between graphite layers becomes significantly weaker, which is in accordance with the results of recent experiments on sonochemical exfoliation of intercalated graphite.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
159 - Fan Ye , Arnob Islam , Teng Zhang 2021
We report on the experimental demonstration of atomically thin molybdenum disulfide (MoS2)-graphene van der Waals (vdW) heterostructure nanoelectromechanical resonators with ultrawide frequency tuning. With direct electrostatic gate tuning, these vdW resonators exhibit exceptional tunability, in general, {Delta}f/f0 >200%, for continuously tuning the same device and the same mode (e.g., from ~23 to ~107MHz), up to {Delta}f/f0 = 370%, the largest fractional tuning range in such resonators to date. This remarkable electromechanical resonance tuning is investigated by two different analytical models and finite element simulations. Further, we carefully perform clear control experiments and simulations to elucidate the difference in frequency tuning between heterostructure and single-material resonators. At a given initial strain level, the tuning range depends on the two-dimensional (2D) Youngs moduli of the constitutive crystals; devices built on materials with lower 2D moduli show wider tuning ranges. This study exemplifies that vdW heterostructure resonators can retain unconventionally broad, continuous tuning, which is promising for voltage-controlled, tunable nanosystems.
132 - H. Santos , A. Ayuela , L. Chico 2012
We study the interaction energy between two graphene nanoribbons by first principles calculations, including van der Waals interactions and spin polarization. For ultranarrow zigzag nanoribbons, the direct stacking is even more stable than Bernal, co mpeting in energy for wider ribbons. This behavior is due to the magnetic interaction between edge states. We relate the reduction of the magnetization in zigzag nanoribbons with increasing ribbon width to the structural changes produced by the magnetic interaction, and show that when deposited on a substrate, zigzag bilayer ribbons remain magnetic for larger widths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا