ﻻ يوجد ملخص باللغة العربية
We performed numerical simulations of blood flow in arteries with a variable stiffness and cross-section at rest using a finite volume method coupled with a hydrostatic reconstruction of the variables at the interface of each mesh cell. The method was then validated on examples taken from the literature. Asymptotic solutions were computed to highlight the effect of the viscous and viscoelastic source terms. Finally, the blood flow was computed in an artery where the cross-section at rest and the stiffness were varying. In each test case, the hydrostatic reconstruction showed good results where other simpler schemes did not, generating spurious oscillations andnonphysical velocities.
We are interested in simulating blood flow in arteries with a one dimensional model. Thanks to recent developments in the analysis of hyperbolic system of conservation laws (in the Saint-Venant/ shallow water equations context) we will perform a simp
A new two-dimensional model for blood flows in arteries with arbitrary cross sections is derived. The model consists of a system of balance laws for conservation of mass and balance of momentum in the axial and angular directions. The equations are d
In this paper, we propose a direct Eulerian generalized Riemann problem (GRP) scheme for a blood flow model in arteries. It is an extension of the Eulerian GRP scheme, which is developed by Ben-Artzi, et. al. in J. Comput. Phys., 218(2006). By using
The blood flow model maintains the steady state solutions, in which the flux gradients are non-zero but exactly balanced by the source term. In this paper, we design high order finite difference weighted non-oscillatory (WENO) schemes to this model w
In this work we are interested in numerical simulations for bedload erosion processes. We present a relaxation solver that we apply to moving dunes test cases in one and two dimensions. In particular we retrieve the so-called anti-dune process that i