ترغب بنشر مسار تعليمي؟ اضغط هنا

Well-balanced finite difference WENO schemes for the blood flow model

116   0   0.0 ( 0 )
 نشر من قبل Olivier Delestre
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The blood flow model maintains the steady state solutions, in which the flux gradients are non-zero but exactly balanced by the source term. In this paper, we design high order finite difference weighted non-oscillatory (WENO) schemes to this model with such well-balanced property and at the same time keeping genuine high order accuracy. Rigorous theoretical analysis as well as extensive numerical results all indicate that the resulting schemes verify high order accuracy, maintain the well-balanced property, and keep good resolution for smooth and discontinuous solutions.

قيم البحث

اقرأ أيضاً

130 - Olivier Delestre 2012
We are interested in simulating blood flow in arteries with a one dimensional model. Thanks to recent developments in the analysis of hyperbolic system of conservation laws (in the Saint-Venant/ shallow water equations context) we will perform a simp le finite volume scheme. We focus on conservation properties of this scheme which were not previously considered. To emphasize the necessity of this scheme, we present how a too simple numerical scheme may induce spurious flows when the basic static shape of the radius changes. On contrary, the proposed scheme is well-balanced: it preserves equilibria of Q = 0. Then examples of analytical or linearized solutions with and without viscous damping are presented to validate the calculations. The influence of abrupt change of basic radius is emphasized in the case of an aneurism.
In this paper, high order semi-implicit well-balanced and asymptotic preserving finite difference WENO schemes are proposed for the shallow water equations with a non-flat bottom topography. We consider the Froude number ranging from O(1) to 0, which in the zero Froude limit becomes the lake equations for balanced flow without gravity waves. We apply a well-balanced finite difference WENO reconstruction, coupled with a stiffly accurate implicit-explicit (IMEX) Runge-Kutta time discretization. The resulting semi-implicit scheme can be shown to be well-balanced, asymptotic preserving (AP) and asymptotically accurate (AA) at the same time. Both one- and two-dimensional numerical results are provided to demonstrate the high order accuracy, AP property and good performance of the proposed methods in capturing small perturbations of steady state solutions.
In this paper we consider a size-structured population model where individuals may be recruited into the population at different sizes. First and second order finite difference schemes are developed to approximate the solution of the mathematical mod el. The convergence of the approximations to a unique weak solution with bounded total variation is proved. We then show that as the distribution of the new recruits become concentrated at the smallest size, the weak solution of the distributed states-at-birth model converges to the weak solution of the classical Gurtin-McCamy-type size-structured model in the weak$^*$ topology. Numerical simulations are provided to demonstrate the achievement of the desired accuracy of the two methods for smooth solutions as well as the superior performance of the second-order method in resolving solution-discontinuities. Finally we provide an example where supercritical Hopf-bifurcation occurs in the limiting single state-at-birth model and we apply the second-order numerical scheme to show that such bifurcation occurs in the distributed model as well.
We are interested in simulating blood flow in arteries with variable elasticity with a one dimensional model. We present a well-balanced finite volume scheme based on the recent developments in shallow water equations context. We thus get a mass cons ervative scheme which also preserves equilibria of Q=0. This numerical method is tested on analytical tests.
In this paper, we propose a novel Hermite weighted essentially non-oscillatory (HWENO) fast sweeping method to solve the static Hamilton-Jacobi equations efficiently. During the HWENO reconstruction procedure, the proposed method is built upon a new finite difference fifth order HWENO scheme involving one big stencil and two small stencils. However, one major novelty and difference from the traditional HWENO framework lies in the fact that, we do not need to introduce and solve any additional equations to update the derivatives of the unknown function $phi$. Instead, we use the current $phi$ and the old spatial derivative of $phi$ to update them. The traditional HWENO fast sweeping method is also introduced in this paper for comparison, where additional equations governing the spatial derivatives of $phi$ are introduced. The novel HWENO fast sweeping methods are shown to yield great savings in both computational time and storage, which improves the computational efficiency of the traditional HWENO scheme. In addition, a hybrid strategy is also introduced to further reduce computational costs. Extensive numerical experiments are provided to validate the accuracy and efficiency of the proposed approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا