ﻻ يوجد ملخص باللغة العربية
Atomically thin layers of two-dimensional (2D) materials such as graphene, MoS2 and h-BN have immense potential as sensors and electronic devices thanks to their highly desirable electronic, mechanical, optical and heat transport properties. In particular their extreme stiffness, tensile strength and low density allows for high frequency electronic devices, resonators and ultra-sensitive detectors providing realistic avenues for down-scaling electronic devices and nanoelectromechanical systems (NEMS). Whilst nanoscale morphology and electronic properties of 2D materials can be studied using existing electron or scanning probe microscopy approaches, time-dependant phenomena on the ns and shorter time-scales cannot be readily explored. Here we use the heterodyne principle to reach into this ns time-scale and create a local nanoscale probe for electrostatically induced actuation of a graphene resonator, with amplitude sensitivity down to pm range and time sensitivity in the ns range. We experimentally observed response times of 20-120 ns for resonators with beam lengths of 180 nm to 2.5 um in line with the theoretical predictions for such NEMS devices.
Provided the electrical properties of electro-burnt graphene junctions can be understood and controlled, they have the potential to underpin the development of a wide range of future sub-10nm electrical devices. We examine both theoretically and expe
Pump-probe spectroscopy is central for exploring ultrafast dynamics of fundamental excitations, collective modes and energy transfer processes. Typically carried out using conventional diffraction-limited optics, pump-probe experiments inherently ave
Nanoelectromechanical systems (NEMSs) are emerging nanoscale elements at the crossroads between mechanics, optics and electronics, with significant potential for actuation and sensing applications. The reduction of dimensions compared to their micron
We report on experiments performed on a cantilever-based tri-port nano-electro-mechanical (NEMS) device. Two ports are used for actuation and detection through the magnetomotive scheme, while the third port is a capacitively coupled gate electrode. B
In the model of gapped graphene, we have shown how the recently predicted topological resonances are solely related to the presence of an energy band gap at the $K$ and $K^prime$ points of the Brillouin zone. In the field of a strong single-oscillati