ﻻ يوجد ملخص باللغة العربية
In the model of gapped graphene, we have shown how the recently predicted topological resonances are solely related to the presence of an energy band gap at the $K$ and $K^prime$ points of the Brillouin zone. In the field of a strong single-oscillation chiral (circularly-polarized) optical pulse, the topological resonance causes the valley-selective population of the conduction band. This population distribution represents a chiral texture in the reciprocal space that is structured with respect to the pulse separatrix as has earlier been predicted for transition metal dichalcogenides. As the band gap is switched off, this chirality gradually disappears replaced by an achiral distribution characteristic of graphene.
We study theoretically the interaction of ultrashort optical pulses with gapped graphene. Such strong pulse results in finite conduction band population and corresponding electric current both during and after the pulse. Since gapped graphene has bro
We study theoretically the strong-field absorption of an ultrafast optical pulse by a gapped graphene monolayer. At low field amplitudes, the absorbance in the pristine graphene is equal to the universal value of $2.3$ percent. Although the ultrafast
We propose an ultrafast all-optical anomalous Hall effect in two-dimensional (2D) semiconductors of hexagonal symmetry such as gapped graphene (GG), transition metal dichalcogenides (TMDCs), and hexagonal boron nitride (h-BN). To induce such an effec
Graphene is an ideal material to study fundamental Coulomb- and phonon-induced carrier scattering processes. Its remarkable gapless and linear band structure opens up new carrier relaxation channels. In particular, Auger scattering bridging the valen
Pump-probe spectroscopy is central for exploring ultrafast dynamics of fundamental excitations, collective modes and energy transfer processes. Typically carried out using conventional diffraction-limited optics, pump-probe experiments inherently ave