ترغب بنشر مسار تعليمي؟ اضغط هنا

The generic character table of a Sylow $p$-subgroup of a finite Chevalley group of type $D_4$

276   0   0.0 ( 0 )
 نشر من قبل Simon Goodwin
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $U$ be a Sylow $p$-subgroup of the finite Chevalley group of type $D_4$ over the field of $q$ elements, where $q$ is a power of a prime $p$. We describe a construction of the generic character table of $U$.



قيم البحث

اقرأ أيضاً

Let $q$ be a power of a prime $p$, let $G$ be a finite Chevalley group over $mathbb{F}_q$ and let $U$ be a Sylow $p$-subgroup of $G$; we assume that $p$ is not a very bad prime for $G$. We explain a procedure of reduction of irreducible complex chara cters of $U$, which leads to an algorithm whose goal is to obtain a parametrization of the irreducible characters of $U$ along with a means to construct these characters as induced characters. A focus in this paper is determining the parametrization when $G$ is of type $mathrm{F}_4$, where we observe that the parametrization is uniform over good primes $p > 3$, but differs for the bad prime $p = 3$. We also explain how it has been applied for all groups of rank $4$ or less.
Left braces, introduced by Rump, have turned out to provide an important tool in the study of set theoretic solutions of the quantum Yang-Baxter equation. In particular, they have allowed to construct several new families of solutions. A left brace $ (B,+,cdot )$ is a structure determined by two group structures on a set $B$: an abelian group $(B,+)$ and a group $(B,cdot)$, satisfying certain compatibility conditions. The main result of this paper shows that every finite abelian group $A$ is a subgroup of the additive group of a finite simple left brace $B$ with metabelian multiplicative group with abelian Sylow subgroups. This result complements earlier unexpected results of the authors on an abundance of finite simple left braces.
We prove that if $B$ is a $p$-block with non-trivial defect group $D$ of a finite $p$-solvable group $G$, then $ell(B) < p^r$, where $r$ is the sectional rank of $D$. We remark that there are infinitely many $p$-blocks $B$ with non-Abelian defect gro ups and $ell(B) = p^r - 1$. We conjecture that the inequality $ell(B) leq p^r$ holds for an arbitrary $p$-block with defect group of sectional rank $r$. We show this to hold for a large class of $p$-blocks of various families of quasi-simple and nearly simple groups.
In the high rank limit, the fraction of non-zero character table entries of finite simple groups of Lie type goes to zero.
Using computational methods, we complete the determination of the $3$-modular character table of the Chevalley group $F_4(2)$ and its covering group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا