ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of doping on the carrier dynamics in graphene

98   0   0.0 ( 0 )
 نشر من قبل Ermin Malic
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a microscopic study on the impact of doping on the carrier dynamics in graphene, in particular focusing on its influence on the technologically relevant carrier multiplication in realistic, doped graphene samples. Treating the time- and momentum-resolved carrier-light, carrier-carrier, and carrier-phonon interactions on the same microscopic footing, the appearance of Auger-induced carrier multiplication up to a Fermi level of 300 meV is revealed. Furthermore, we show that doping favors the so-called hot carrier multiplication occurring within one band. Our results are directly compared to recent time-resolved ARPES measurements and exhibit an excellent agreement on the temporal evolution of the hot carrier multiplication for n- and p-doped graphene. The gained insights shed light on the ultrafast carrier dynamics in realistic, doped graphene samples

قيم البحث

اقرأ أيضاً

Graphene is an ideal material to study fundamental Coulomb- and phonon-induced carrier scattering processes. Its remarkable gapless and linear band structure opens up new carrier relaxation channels. In particular, Auger scattering bridging the valen ce and the conduction band changes the number of charge carriers and gives rise to a significant carrier multiplication - an ultrafast many-particle phenomenon that is promising for the design of highly efficient photodetectors. Furthermore, the vanishing density of states at the Dirac point combined with ultrafast phonon-induced intraband scattering results in an accumulation of carriers and a population inversion suggesting the design of graphene-based terahertz lasers. Here, we review our work on the ultrafast carrier dynamics in graphene and Landau-quantized graphene is presented providing a microscopic view on the appearance of carrier multiplication and population inversion.
The remarkable gapless and linear band structure of graphene opens up new carrier relaxation channels bridging the valence and the conduction band. These Auger scattering processes change the number of charge carriers and can give rise to a significa nt multiplication of optically excited carriers in graphene. This is an ultrafast many-particle phenomenon that is of great interest both for fundamental many-particle physics as well as technological applications. Here, we review the research on carrier multiplication in graphene and Landau-quantized graphene including theoretical modelling and experimental demonstration.
Ultrafast carrier dynamics of pristine bilayer graphene (BLG) and bilayer graphene intercalated with FeCl3 (FeCl3-G), were studied using time-resolved transient differential reflection (delta R/R). Compared to BLG, the FeCl3-G data showed an opposite sign of delta R/R, a slower rise time, and a single (instead of double) exponential relaxation. We attribute these differences in dynamics to the down-shifting of the Fermi level in FeCl3-G, as well as the formation of numerous horizontal bands arising from the d-orbitals of Fe. Our work shows that intercalation can dramatically change the electronic structure of graphene, and its associated carrier dynamics.
It is widely assumed that the dominant source of scattering in graphene is charged impurities in a substrate. We have tested this conjecture by studying graphene placed on various substrates and in high-k media. Unexpectedly, we have found no signifi cant changes in carrier mobility either for different substrates or by using glycerol, ethanol and water as a top dielectric layer. This suggests that Coulomb impurities are not the scattering mechanism that limits the mean free path currently attainable for graphene on a substrate.
We theoretically examine the effect of carrier-carrier scattering processes (electron-hole and electron-electron) on the intraband radiation absorption and their contribution to the net dynamic conductivity in optically or electrically pumped graphen e. We demonstrate that the radiation absorption assisted by the carrier-carrier scattering can be stronger than the Drude absorption due to the carrier scattering on disorder. Since the intraband absorption of radiation effectively competes with its interband amplification, this can substantially affect the conditions of the negative dynamic conductivity in the pumped graphene and, hence, the interband terahertz and infrared lasing. We find the threshold values of the frequency and quasi-Fermi energy of nonequilibrium carriers corresponding to the onset of negative dynamic conductivity. The obtained results show that the effect of carrier-carrier scattering shifts the threshold frequency of the radiation amplification in pumped graphene to higher values. In particular, the negative dynamic conductivity is attainable at the frequencies above 6 THz in graphene on SiO2 substrates at room temperature. The threshold frequency can be decreased to markedly lower values in graphene structures with high-k substrates due to screening of the carrier-carrier scattering, particularly at lower temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا