ترغب بنشر مسار تعليمي؟ اضغط هنا

The imprint of carbon combustion on a superburst from the accreting neutron star 4U 1636-536

64   0   0.0 ( 0 )
 نشر من قبل Laurens Keek
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superbursts are hours-long X-ray flares attributed to the thermonuclear runaway burning of carbon-rich material in the envelope of accreting neutron stars. By studying the details of the X-ray light curve, properties of carbon combustion can be determined. In particular, we show that the shape of the rise of the light curve is set by the the slope of the temperature profile left behind by the carbon flame. We analyse RXTE/PCA observations of 4U 1636-536 and separate the direct neutron star emission from evolving photoionized reflection and persistent spectral components. This procedure results in the highest quality light curve ever produced for the superburst rise and peak, and interesting behaviour is found in the tail. The rising light curve between 100 and 1000 seconds is inconsistent with the idea that the fuel burned locally and instantaneously everywhere, as assumed in some previous models. By fitting improved cooling models, we measure for the first time the radial temperature profile of the superbursting layer. We find $dln T/dln P=1/4$. Furthermore, 20% of the fuel may be left unburned. This gives a new constraint on models of carbon burning and propagation in superbursts.

قيم البحث

اقرأ أيضاً

Recent studies have shown that runaway thermonuclear burning of material accreted onto neutron stars, i.e. Type I X-ray bursts, may affect the accretion disk. We investigate this by performing a detailed time-resolved spectral analysis of the superbu rst from 4U 1636-536 observed in 2001 with the Rossi X-ray Timing Explorer. Superbursts are attributed to the thermonuclear burning of carbon, and are approximately 1000 times more energetic than the regular short Type I bursts. This allows us to study detailed spectra for over 11 ks, compared to at most 100 s for regular bursts. A feature is present in the superburst spectra around 6.4 keV that is well fit with an emission line and an absorption edge, suggestive of reflection of the superburst off the accretion disk. The line and edge parameters evolve over time: the edge energy decreases from 9.4 keV at the peak to 8.1 keV in the tail, and both features become weaker in the tail. This is only the second superburst for which this has been detected, and shows that this behavior is present even without strong radius expansion. Furthermore, we find the persistent flux to almost double during the superburst, and return to the pre-superburst level in the tail. The combination of reflection features and increased persistent emission indicates that the superburst had a strong impact on the inner accretion disk, and it emphasizes that X-ray bursts provide a unique probe of accretion physics.
When a thermonuclear X-ray burst ignites on an accreting neutron star, the accretion disk undergoes sudden strong X-ray illumination, which can drive a range of processes in the disk. Observations of superbursts, with durations of several hours, prov ide the best opportunity to study these processes and to probe accretion physics. Using detailed models of ionized reflection, we perform time resolved spectroscopy of the superburst observed from 4U 1636-536 in 2001 with RXTE. The spectra are consistent with a blackbody reflecting off a photoionized accretion disk, with the ionization state dropping with time. The evolution of the reflection fraction indicates that the initial reflection occurs from a part of the disk at larger radius, subsequently transitioning to reflection from an inner region of the disk. Even though this superburst did not reach the Eddington limit, we find that a strong local absorber develops during the superburst. Including this event, only two superbursts have been observed by an instrument with sufficient collecting area to allow for this analysis. It highlights the exciting opportunity for future X-ray observatories to investigate the processes in accretion disks when illuminated by superbursts.
108 - H. Stiele , W. Yu , A. K. H. Kong 2016
Based on previous studies of quasi-periodic oscillations in neutron star LMXBs, mHz quasi-periodic oscillations (QPO) are believed to be related to `marginally stable burning on the neutron star (NS) surface. Our study of phase resolved energy spectr a of these oscillations in 4U 1636-53 shows that the oscillations are not caused by variations in the blackbody temperature of the neutron star, but reveals a correlation between the change of the count rate during the mHz QPO pulse and the spatial extend of a region emitting blackbody emission. The maximum size of the emission area $R^2_{mathrm{BB}}=216.7^{+93.2}_{-86.4}$km$^2$, provides the direct evidence that the oscillations originate from a variable surface area constrained on the NS and are therefore not related to instabilities in the accretion disk. The obtained lower limit on the size of the neutron star (11.0 km) rules out equations of state that prefer small NS radii. Observations of mHz QPOs in NS LMXBs with NICER and eXTP will reduce the statistical uncertainty in the lower limit on the NS radius, which together with better estimates of the hardening factor and distance, will allow improving discrimination between different equations of state and compact star models. Furthermore, future missions will allow us to measure the peak blackbody emission area for a single mHz QPO pulse, which will push the lower limit to larger radii.
163 - Erik Kuulkers 2004
Preliminary results are reported on the spectral and timing properties of the spectacular 2001 superburst of 4U 1636-536 as seen by the RXTE/PCA. The (broad-band) power-spectral and hardness properties during the superburst are compared to those just before and after the superburst. Not all of the superburst emission can be fitted by pure black-body radiation. We also gathered BeppoSAX/WFC and RXTE/ASM data, as well as other RXTE/PCA data, obtained days to months before and after the superburst to investigate the normal X-ray burst behavior around the time of the superburst. The first normal X-ray burst after the 2001 superburst was detected 23 days later. During inspection of all the RXTE/ASM data we found a third superburst. This superburst took place on June 26, 1999, which is ~2.9 yrs after the 1996 superburst and ~1.75 yrs before the 2001 superburst. The above findings are the strongest constraints observed so far on the duration of the cessation of normal X-ray bursts after a superburst and the superburst recurrence times.
We report results obtained from the study of 12 thermonuclear X-ray bursts in 6 AstroSat observations of a neutron star X-ray binary and well-known X-ray burster, 4U 1636$-$536. Burst oscillations at $sim$581 Hz are observed with 4$-$5$sigma$ confide nce in three of these X-ray bursts. The rising phase burst oscillations show a decreasing trend of the fractional rms amplitude at 3$sigma$ confidence,by far the strongest evidence of thermonuclear flame spreading observed with AstroSat. During the initial 0.25 second of the rise a very high value (34.0$pm$6.7%) is observed. The concave shape of the fractional amplitude profile provides a strong evidence of latitude-dependent flame speeds, possibly due to the effects of the Coriolis force. We observe decay phase oscillations with amplitudes comparable to that observed during the rising phase, plausibly due to the combined effect of both surface modes as well as the cooling wake. The Doppler shifts due to the rapid rotation of the neutron star might cause hard pulses to precede the soft pulses, resulting in a soft lag. The distance to the source estimated using the PRE bursts is consistent with the known value of $sim$6 kpc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا