ﻻ يوجد ملخص باللغة العربية
Recent studies have shown that runaway thermonuclear burning of material accreted onto neutron stars, i.e. Type I X-ray bursts, may affect the accretion disk. We investigate this by performing a detailed time-resolved spectral analysis of the superburst from 4U 1636-536 observed in 2001 with the Rossi X-ray Timing Explorer. Superbursts are attributed to the thermonuclear burning of carbon, and are approximately 1000 times more energetic than the regular short Type I bursts. This allows us to study detailed spectra for over 11 ks, compared to at most 100 s for regular bursts. A feature is present in the superburst spectra around 6.4 keV that is well fit with an emission line and an absorption edge, suggestive of reflection of the superburst off the accretion disk. The line and edge parameters evolve over time: the edge energy decreases from 9.4 keV at the peak to 8.1 keV in the tail, and both features become weaker in the tail. This is only the second superburst for which this has been detected, and shows that this behavior is present even without strong radius expansion. Furthermore, we find the persistent flux to almost double during the superburst, and return to the pre-superburst level in the tail. The combination of reflection features and increased persistent emission indicates that the superburst had a strong impact on the inner accretion disk, and it emphasizes that X-ray bursts provide a unique probe of accretion physics.
Preliminary results are reported on the spectral and timing properties of the spectacular 2001 superburst of 4U 1636-536 as seen by the RXTE/PCA. The (broad-band) power-spectral and hardness properties during the superburst are compared to those just
When a thermonuclear X-ray burst ignites on an accreting neutron star, the accretion disk undergoes sudden strong X-ray illumination, which can drive a range of processes in the disk. Observations of superbursts, with durations of several hours, prov
Superbursts are hours-long X-ray flares attributed to the thermonuclear runaway burning of carbon-rich material in the envelope of accreting neutron stars. By studying the details of the X-ray light curve, properties of carbon combustion can be deter
We report results obtained from the study of 12 thermonuclear X-ray bursts in 6 AstroSat observations of a neutron star X-ray binary and well-known X-ray burster, 4U 1636$-$536. Burst oscillations at $sim$581 Hz are observed with 4$-$5$sigma$ confide
To investigate the possible cooling of the corona by soft X-rays bursts, we have studied 114 bursts embedded in the known X-ray evolution of 4U 1636-536. We have grouped these bursts according to the ratio of the flux in the 1.5--12 keV band with res