ترغب بنشر مسار تعليمي؟ اضغط هنا

From de Sitter to de Sitter: decaying vacuum models as a possible solution to the main cosmological problems

86   0   0.0 ( 0 )
 نشر من قبل Jose Ademir Sales Lima
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Decaying vacuum cosmological models evolving smoothly between two extreme (very early and late time) de Sitter phases are capable to solve or at least to alleviate some cosmological puzzles, among them: (i) the singularity, (ii) horizon, (iii) graceful-exit from inflation, and (iv) the baryogenesis problem. Our basic aim here is to discuss how the coincidence problem based on a large class of running vacuum cosmologies evolving from de Sitter to de Sitter can also be mollified. It is also argued that even the cosmological constant problem become less severe provided that the characteristic scales of the two limiting de Sitter manifolds are predicted from first principles.

قيم البحث

اقرأ أيضاً

102 - Katie E. Leonard 2012
Previous studies of the vacuum polarization on de Sitter have demonstrated that there is a simple, noncovariant representation of it in which the physics is transparent. There is also a cumbersome, covariant representation in which the physics is obs cure. Despite being unwieldy, the latter form has a powerful appeal for those who are concerned about de Sitter invariance. We show that nothing is lost by employing the simple, noncovariant representation because there is a closed form procedure for converting its structure functions to those of the covariant representation. We also present a vastly improved technique for reading off the noncovariant structure functions from the primitive diagrams. And we discuss the issue of representing the vacuum polarization for a general metric background.
Horndeski models with a de Sitter critical point for any kind of material content may provide a mechanism to alleviate the cosmological constant problem. We study the cosmological evolution of two classes of families - the linear models and the non-l inear models with shift symmetry. We conclude that the latter models can deliver a background dynamics compatible with the latest observational data.
We present and describe an exact solution of Einsteins equations which represents a snapping cosmic string in a vacuum background with a cosmological constant $Lambda$. The snapping of the string generates an impulsive spherical gravitational wave wh ich is a particular member of a known family of such waves. The global solution for all values of $Lambda$ is presented in various metric forms and interpreted geometrically. It is shown to represent the limit of a family of sandwich type N Robinson-Trautman waves. It is also derived as a limit of the C-metric with $Lambda$, in which the acceleration of the pair of black holes becomes unbounded while their masses are scaled to zero.
In this work we study the Sorkin-Johnston (SJ) vacuum in de Sitter spacetime for free scalar field theory. For the massless theory we find that the SJ vacuum can neither be obtained from the $O(4)$ Fock vacuum of Allen and Folacci nor from the non-Fo ck de Sitter invariant vacuum of Kirsten and Garriga. Using a causal set discretisation of a slab of 2d and 4d de Sitter spacetime, we find the causal set SJ vacuum for a range of masses $m geq 0$ of the free scalar field. While our simulations are limited to a finite volume slab of global de Sitter spacetime, they show good convergence as the volume is increased. We find that the 4d causal set SJ vacuum shows a significant departure from the continuum Motolla-Allen $alpha$-vacua. Moreover, the causal set SJ vacuum is well-defined for both the minimally coupled massless $m=0$ and the conformally coupled massless $m=m_c$ cases. This is at odds with earlier work on the continuum de Sitter SJ vacuum where it was argued that the continuum SJ vacuum is ill-defined for these masses. Our results hint at an important tension between the discrete and continuum behaviour of the SJ vacuum in de Sitter and suggest that the former cannot in general be identified with the Mottola-Allen $alpha$-vacua even for $m>0$.
104 - D. Glavan 2015
We evaluate the one-graviton loop contribution to the vacuum polarization on de Sitter background in a 1-parameter family of exact, de Sitter invariant gauges. Our result is computed using dimensional regularization and fully renormalized with BPHZ c ounterterms, which must include a noninvariant owing to the time-ordered interactions. Because the graviton propagator engenders a physical breaking of de Sitter invariance two structure functions are needed to express the result. In addition to its relevance for the gauge issue this is the first time a covariant gauge graviton propagator has been used to compute a noncoincident loop. A number of identities are derived which should facilitate further graviton loop computations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا