ﻻ يوجد ملخص باللغة العربية
The compositional dependence of thermal expansion behaviour in 19 different perovskite-like metal-organic frameworks (MOFs) of composition [AI][MII(HCOO)3] (A = alkylammonium cation; M = octahedrally-coordinated divalent metal) is studied using variable-temperature X-ray powder diffraction measurements. While all systems show essentially the same type of thermomechanical response-irrespective of their particular structural details-the magnitude of this response is shown to be a function of AI and MII cation radii, as well as the molecular anisotropy of AI. Flexibility is maximised for large MII and small AI, while the shape of AI has implications for the direction of framework hingeing.
Motivated by efforts to create thin nanoscale metamaterials and understand atomically thin binary monolayers, we study the finite temperature statistical mechanics of arrays of bistable buckled dilations embedded in free-standing two-dimensional crys
We provide a complete quantitative explanation for the anisotropic thermal expansion of hcp Ti at low temperature. The observed negative thermal expansion along the c-axis is reproduced theoretically by means of a parameter free theory which involves
We have investigated the anisotropic thermal expansion of graphite using ab-initio calculation of lattice dynamics and anharmonicity of the phonons, which reveal that the negative thermal expansion (NTE) in the a-b plane below 600 K and very large po
Despite the widespread use of silicon in modern technology, its peculiar thermal expansion is not well-understood. Adapting harmonic phonons to the specific volume at temperature, the quasiharmonic approximation, has become accepted for simulating th
Thermal expansion in materials can be accurately modeled with careful anharmonic phonon calculations within density functional theory. However, because of interest in controlling thermal expansion and the time consumed evaluating thermal expansion pr