ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on: Investigation of the thermal lens effect of the TGG crystal in high-power frequency-doubled laser with single frequency operation

127   0   0.0 ( 0 )
 نشر من قبل Ulrich Eismann
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ulrich Eismann




اسأل ChatGPT حول البحث

In their article, the authors of [Opt. Express 23, 4981 (2015)] observe step-like behavior and hysteresis of the output power of a diode-end-pumped Nd:YVO 4-laser as a function of pump power. While claiming that this behavior is a proof of thermal lensing in the intra-cavity TGG, no direct evidence is given. We will discuss here the validity of their statement, and propose an experimental proof.



قيم البحث

اقرأ أيضاً

We develop a green light source with low spatial coherence via intracavity frequency doubling of a solid-state degenerate laser. The second harmonic emission supports many more transverse modes than the fundamental emission, and exhibit lower spatial coherence. A strong suppression of speckle formation is demonstrated for both fundamental and second harmonic beams. Using the green emission for fluorescence excitation, we show the coherent artifacts are removed from the full-field fluorescence images. The high power, low spatial coherence and good directionality makes the green degenerate laser an attractive illumination source for parallel imaging and projection display.
We present a resonantly frequency-doubled tapered amplified semiconductor laser system emitting up to 2.6 W blue light at 400 nm. The output power is stable on both short and long timescales with 0.12% RMS relative intensity noise, and less than 0.15 %/h relative power loss over 16 hours of free running continuous operation. Furthermore, the output power can be actively stabilized, and the alignment of the input beams of the tapered amplifier chip, the frequency doubling cavity and-in case of fiber output-the fiber can be optimized automatically using computer-controlled mirrors.
In this paper, a technique combing cascaded energy-transfer pumping (CEP) method and master-oscillator power-amplifier (MOPA) configuration is proposed for power scaling of 1.6-um-band single-frequency fiber lasers (SFFLs), where the Er3+ ion has a l imited gain. The CEP technique is fulfilled by coupling a primary signal light at 1.6 um and a C-band auxiliary laser. The numerical model of the fiber amplifier with the CEP technique reveals that the energy transfer process involves the pump competition and the in-band particle transition between the signal and auxiliary lights. Moreover, for the signal emission, the population density in the upper level is enhanced and the effective population inversion is achieved due to the CEP. A single-frequency MOPA laser at 1603 nm with an output power of 52.6 W is obtained experimentally. Besides, a slope efficiency of 30.4% is improved by more than 10% through the CEP technique. Both the output power and slope efficiency are by far the highest for 1.6-um-band SFFLs. Meanwhile, a laser linewidth of 5.2 kHz and a polarization-extinction ratio of ~18 dB are obtained at the maximum output power. The proposed technique provides an optional method of increasing the slope efficiency and power scaling for fiber lasers operating at L-band.
This work reports single-frequency laser oscillation at 1003.4 nm of an optically pumped external cavity semiconductor laser. By using a gain structure bonded onto a high conductivity substrate, we demonstrate both theoretically and experimentally th e strong reduction of the thermal resistance of the active semiconductor medium, resulting in a high power laser emission. The spectro-temporal dynamics of the laser is also explained. Furthermore, an intracavity frequency-doubling crystal was used to obtain a stable single-mode generation of blue (501.5 nm) with an output power around 60 mW.
85 - August Bouwen 2001
A high-frequency (95 GHz) EPR study is reported on single crystals of the planar tetranuclear complex Fe4(OCH3)6(dpm)6 (where Hdpm = dipivaloylmethane), which has been previously shown to present typical single-molecule magnet behaviour. The spectra, all originating from the S = 5 ground state, possess quasi-axial symmetry along the normal to the plane defined by the four Fe(III) ions. The measured spectra are shown to belong to three different structural variations of the compound, resulting from disorder in the ligands around two of the Fe(III) ions. Accurate values could be obtained for the second- and fourth-order crystal field parameters related to the parallel EPR-spectra, while the other parameters could be determined only for the dominant species. The separation between individual lines is decreasing and vanishing with increasing temperature. This effect is attributed to the contribution of fast relaxing excited states, whose population is varying with temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا