ترغب بنشر مسار تعليمي؟ اضغط هنا

Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor

104   0   0.0 ( 0 )
 نشر من قبل Griffin Hosseinzadeh
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light curve is unique in that it has a blue bump during the first five days of observations in the U, B, and g bands, which is clearly resolved given our photometric cadence of 5.7 hr during that time span. We model the light curve as the combination of early shocking of the supernova ejecta against a nondegenerate companion star plus a standard SN Ia component. Our best-fit model suggests the presence of a subgiant star 56 solar radii from the exploding white dwarf, although this number is highly model-dependent. While this model matches the optical light curve well, it overpredicts the observed flux in the ultraviolet bands. This may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual nickel distribution. Early optical spectra of SN 2017cbv show strong carbon absorption up through day -13 with respect to maximum light, suggesting that the progenitor system contains a significant amount of unburned material. These early results on SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovae to resolve standing questions about the progenitor systems and explosion mechanisms of SNe Ia.



قيم البحث

اقرأ أيضاً

We present nebular phase optical and near-infrared spectroscopy of the Type Ia supernova (SN) 2017cbv. The early light curves of SN~2017cbv showed a prominent blue bump in the $U$, $B$ and $g$ bands lasting for $sim$5 d. One interpretation of the ear ly light curve was that the excess blue light was due to shocking of the SN ejecta against a nondegenerate companion star -- a signature of the single degenerate scenario. If this is the correct interpretation, the interaction between the SN ejecta and the companion star could result in significant H$alpha$ (or helium) emission at late times, possibly along with other species, depending on the companion star and its orbital separation. A search for H$alpha$ emission in our +302 d spectrum yields a nondetection, with a $L_{Halpha}$$<$8.0$times$10$^{35}$ erg/s (given an assumed distance of $D$=12.3 Mpc), which we have verified by implanting simulated H$alpha$ emission into our data. We make a quantitative comparison to models of swept-up material stripped from a nondegenerate companion star, and limit the mass of hydrogen that might remain undetected to $M_{rm H} < 1 times 10^{-4}$ $rm M_{odot}$. A similar analysis of helium star related lines yields a $M_{rm He} < 5 times 10^{-4}$ $rm M_{odot}$. Taken at face value, these results argue against a nondegenerate H or He-rich companion in Roche lobe overflow as the progenitor of SN 2017cbv. Alternatively, there could be weaknesses in the envelope-stripping and radiative transfer models necessary to interpret the strong H and He flux limits.
As the closest Type Ia supernova in decades, SN 2014J provides a unique opportunity for detailed investigation into observational signatures of the progenitor system and explosion mechanism in addition to burning product distribution. We present a la te-time near-infrared spectral series from Gemini-N at $307-466$ days after the explosion. Following the $H$-band evolution probes the distribution of radioactive iron group elements, the extent of mixing, and presence of magnetic fields in the expanding ejecta. Comparing the isolated $1.6440$ $mu$m [Fe II] emission line with synthetic models shows consistency with a Chandrasekhar-mass white dwarf of $rho_c=0.7times10^9$ g cm${}^{-3}$ undergoing a delayed detonation. The ratio of the flux in the neighboring $1.54$ $mu$m emission feature to the flux in the $1.6440$ $mu$m feature shows evidence of some limited mixing of stable and radioactive iron group elements in the central regions. Additionally, the evolution of the $1.6440$ $mu$m line shows an intriguing asymmetry. When measuring line-width of this feature, the data show an increase in line width not seen in the evolution of the synthetic spectra, corresponding to $approx1{,}000$ km s${}^{-1}$, which could be caused by a localized transition to detonation producing asymmetric ionization in the ejecta. Using the difference in width between the different epochs, an asymmetric component in the central regions, corresponding to approximately the inner $2times10^{-4}$ of white dwarf mass suggests an off-center ignition of the initial explosion and hence of the kinematic center from the chemical center. Several additional models investigated, including a He detonation and a merger, have difficulty reproducing the features seen these spectra.
Supernova (SN) 2017cbv in NGC 5643 is one of a handful of type Ia supernovae (SNe~Ia) reported to have excess blue emission at early times. This paper presents extensive $BVRIYJHK_s$-band light curves of SN 2017cbv, covering the phase from $-16$ to $ +125$ days relative to $B$-band maximum light. SN 2017cbv reached a $B$-band maximum of 11.710$pm$0.006~mag, with a post-maximum magnitude decline $Delta m_{15}(B)$=0.990$pm$0.013 mag. The supernova suffered no host reddening based on Phillips intrinsic color, Lira-Phillips relation, and the CMAGIC diagram. By employing the CMAGIC distance modulus $mu=30.58pm0.05$~mag and assuming $H_0$=72~$rm km s^{-1} Mpc^{-1}$, we found that 0.73~msun $^{56}$Ni was synthesized during the explosion of SN 2017cbv, which is consistent with estimates using reddening-free and distance-free methods via the phases of the secondary maximum of the NIR-band light curves. We also present 14 near-infrared spectra from $-18$ to $+49$~days relative to the $B$-band maximum light, providing constraints on the amount of swept-up hydrogen from the companion star in the context of the single degenerate progenitor scenario. No $Pa{beta}$ emission feature was detected from our post-maximum NIR spectra, placing a hydrogen mass upper limit of 0.1 $M_{odot}$. The overall optical/NIR photometric and NIR spectral evolution of SN 2017cbv is similar to that of a normal SN~Ia, even though its early evolution is marked by a flux excess no seen in most other well-observed normal SNe~Ia. We also compare the exquisite light curves of SN 2017cbv with some $M_{ch}$ DDT models and sub-$M_{ch}$ double detonation models.
We present early phase observations in optical and near-infrared wavelengths for the extremely luminous Type Ia supernova (SN Ia) 2009dc. The decline rate of the light curve is $Delta m_{15}(B)=0.65pm 0.03$, which is one of the slowest among SNe Ia. The peak $V$-band absolute magnitude is $M_{V}=-19.90pm 0.15$ mag even if the host extinction is $A_{V}=0$ mag. It reaches $M_{V}=-20.19pm 0.19$ mag for the host extinction of $A_{V}=0.29$ mag as inferred from the observed Na {sc i} D line absorption in the host. Our $JHK_{s}$-band photometry shows that the SN is one of the most luminous SNe Ia also in near-infrared wavelengths. These results indicate that SN 2009dc belongs to the most luminous class of SNe Ia, like SN 2003fg and SN 2006gz. We estimate the ejected $^{56}$Ni mass of $1.2pm 0.3$ $Msun$ for no host extinction case (or 1.6$pm$ 0.4 M$_{odot}$ for the host extinction of $A_{V}=0.29$ mag). The C {sc ii} $lambda$6580 absorption line keeps visible until a week after maximum, which diminished in SN 2006gz before its maximum brightness. The line velocity of Si {sc ii} $lambda$6355 is about 8000 km s$^{-1}$ around the maximum, being considerably slower than that of SN 2006gz, while comparable to that of SN 2003fg. The velocity of the C {sc ii} line is almost comparable to that of the Si {sc ii}. The presence of the carbon line suggests that thick unburned C+O layers remain after the explosion. SN 2009dc is a plausible candidate of the super-Chandrasekhar mass SNe Ia.
177 - M. Fraser 2009
We report the identification of a source coincident with SN 2009kr in HST pre-explosion images. The object appears to be a single point source with an intrinsic colour V-I = 1.1 and M_V = -7.6. If this is a single star it would be a yellow supergiant of log L/L_{sol} sim 5.1 and a mass of 15 (+5/-4) M_{sol}. The spatial resolution does not allow us yet to definitively determine if the progenitor object is a single star, a binary system, or a compact cluster. We show that the early lightcurve is flat, similar to IIP SNe, but that the the spectra are somewhat peculiar, displaying unusual P-Cygni profiles. The evolution of the expanding ejecta will play an important role in understanding the progenitor object.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا