ﻻ يوجد ملخص باللغة العربية
We give a determination of the phenomenological value of the Wilson (or gradient) flow scales t0 and w0 for 2+1 flavours of dynamical quarks. The simulations are performed keeping the average quark mass constant, which allows the approach to the physical point to be made in a controlled manner. O(a) improved clover fermions are used and together with four lattice spacings this allows the continuum extrapolation to be taken.
Scale setting is of central importance in lattice QCD. It is required to predict dimensional quantities in physical units. Moreover, it determines the relative lattice spacings of computations performed at different values of the bare coupling, and t
We determine the scale setting function and the pseudo-critical temperature on the lattice in $N_f=2$ two-color QCD using the Iwasaki gauge and Wilson fermion actions. Although two-color QCD does not correspond to the real world, it is very useful as
We present an update on our on-going project to compute hadronic observables for Nf=2 flavours of O(a) improved Wilson fermions at small lattice spacings. The procedure to determine the lattice scale via the mass of the Omega baryon is described. Fur
We present 2+1 flavor Lattice QCD calculations of the nucleon scalar and tensor charges. Using the BMW clover-improved Wilson action with pion masses between 150 and 350 MeV and three source-sink separations between 0.9 and 1.4 fm, we achieve good co
To obtain the precise values of the bulk quantities and transport coefficients in quark-gluon-plasma phase, we propose that a direct calculation of the renormalized energy-momentum tensor (EMT) on the lattice using the gradient flow. From one-point f