ترغب بنشر مسار تعليمي؟ اضغط هنا

ATLAS diboson excess from low scale supersymmetry breaking

112   0   0.0 ( 0 )
 نشر من قبل Riccardo Torre
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide an interpretation of the recent ATLAS diboson excess in terms of a class of supersymmetric models in which the scale of supersymmetry (SUSY) breaking is in the few TeV range. The particle responsible for the excess is the scalar superpartner of the Goldstone fermion associated with SUSY breaking, the sgoldstino. This scalar couples strongly to the Standard Model vector bosons and weakly to the fermions, with all coupling strengths determined by ratios of soft SUSY breaking parameters over the SUSY breaking scale. Explaining the ATLAS excess selects particular relations and ranges for the gaugino masses, while imposing no constraints on the other superpartner masses. Moreover, this signal hypothesis predicts a rate in the $Zgamma$ final state that is expected to be observable at the LHC Run II already with a few fb$^{-1}$ of integrated luminosity.

قيم البحث

اقرأ أيضاً

The ATLAS collaboration has recently reported a 2.6 sigma excess in the search for a heavy resonance decaying into a pair of weak gauge bosons. Only fully hadronic final states are being looked for in the analysis. If the observed excess really origi nates from the gauge bosons decays, other decay modes of the gauge bosons would inevitably leave a trace on other exotic searches. In this paper, we propose the use of the Z boson decay into a pair of neutrinos to test the excess. This decay leads to a very large missing energy and can be probed with conventional dark matter searches at the LHC. We discuss the current constraints from the dark matter searches and the prospects. We find that optimizing these searches may give a very robust probe of the resonance, even with the currently available data of the 8 TeV LHC.
69 - L. Boubekeur 2004
We investigate the possibility of low-scale leptogenesis in the minimal supersymmetric standard model extended with right handed (s)neutrinos. We demonstrate that successful leptogenesis can be easily achieved at a scale as low as ~ TeV where lepton number and CP violation comes from soft supersymmetry breaking terms. The scenario is shown to be compatible with neutrino masses data.
Recent LHC data significantly extend the exclusion limits for supersymmetric particles, particularly in the jets plus missing transverse momentum channels. The most recent such data have so far been interpreted by the experiment in only two different supersymmetry breaking models: the constrained minimal supersymmetric standard model (CMSSM) and a simplified model with only squarks and gluinos and massless neutralinos. We compare kinematical distributions of supersymmetric signal events predicted by the CMSSM and anomaly mediated supersymmetry breaking (mAMSB) before calculating exclusion limits in mAMSB. We obtain a lower limit of 900 GeV on squark and gluino masses at the 95% confidence level for the equal mass limit, tan(beta)=10 and mu>0.
164 - Anson Hook 2018
A recent cosmological bound on the gravitino mass, $m_{3/2}<4.7$ eV, together with LHC results on the Higgs mass and direct searches, excludes minimal gauge mediation with high reheating temperatures. We discuss a minimal, vector-mediated model which incorporates the seesaw mechanism for neutrino masses, allows for thermal leptogenesis, ameliorates the $mu$ problem, and achieves the observed Higgs mass and a gravitino as light as $1$-$2$ eV.
We study the scenario that conformal dynamics leads to metastable supersymmetry breaking vacua. At a high energy scale, the superpotential is not R-symmetric, and has a supersymmetric minimum. However, conformal dynamics suppresses several operators along renormalization group flow toward the infrared fixed point. Then we can find an approximately R-symmetric superpotential, which has a metastable supersymmetry breaking vacuum, and the supersymmetric vacuum moves far away from the metastable supersymmetry breaking vacuum. We show a 4D simple model. Furthermore, we can construct 5D models with the same behavior, because of the AdS/CFT dual.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا