ﻻ يوجد ملخص باللغة العربية
We consider a Moran model with two allelic types, mutation and selection. In this work, we study the behaviour of the proportion of fit individuals when the size of the population tends to infinity, without any rescaling of parameters or time. We first prove that the latter converges, uniformly in compacts in probability, to the solution of an ordinary differential equation, which is explicitly solved. Next, we study the stability properties of its equilibrium points. Moreover, we show that the fluctuations of the proportion of fit individuals, after a proper normalization, satisfy a uniform central limit theorem in $[0,infty)$. As a consequence, we deduce the convergence of the corresponding stationary distributions.
We study the common ancestor type distribution in a $2$-type Moran model with population size $N$, mutation and selection, and in the deterministic limit regime arising in the former when $N$ tends to infinity, without any rescaling of parameters or
In this article, we are interested in the normal approximation of the self-normalized random vector $Big(frac{sum_{i=1}^{n}X_{i1}}{sqrt{sum_{i=1}^{n}X_{i1}^2}},dots,frac{sum_{i=1}^{n}X_{ip}}{sqrt{sum_{i=1}^{n}X_{ip}^2}}Big)$ in $mathcal{R}^p$ uniform
A strengthened version of the central limit theorem for discrete random variables is established, relying only on information-theoretic tools and elementary arguments. It is shown that the relative entropy between the standardised sum of $n$ independ
For probability measures on a complete separable metric space, we present sufficient conditions for the existence of a solution to the Kantorovich transportation problem. We also obtain sufficient conditions (which sometimes also become necessary) fo
Mean field games (MFGs) describe the limit, as $n$ tends to infinity, of stochastic differential games with $n$ players interacting with one another through their common empirical distribution. Under suitable smoothness assumptions that guarantee uni