ﻻ يوجد ملخص باللغة العربية
In this article, we are interested in the normal approximation of the self-normalized random vector $Big(frac{sum_{i=1}^{n}X_{i1}}{sqrt{sum_{i=1}^{n}X_{i1}^2}},dots,frac{sum_{i=1}^{n}X_{ip}}{sqrt{sum_{i=1}^{n}X_{ip}^2}}Big)$ in $mathcal{R}^p$ uniformly over the class of hyper-rectangles $mathcal{A}^{re}={prod_{j=1}^{p}[a_j,b_j]capmathcal{R}:-inftyleq a_jleq b_jleq infty, j=1,ldots,p}$, where $X_1,dots,X_n$ are non-degenerate independent $p-$dimensional random vectors with each having independent and identically distributed (iid) components. We investigate the optimal cut-off rate of $log p$ in the uniform central limit theorem (UCLT) under variety of moment conditions. When $X_{ij}$s have $(2+delta)$th absolute moment for some $0< deltaleq 1$, the optimal rate of $log p$ is $obig(n^{delta/(2+delta)}big)$. When $X_{ij}$s are independent and identically distributed (iid) across $(i,j)$, even $(2+delta)$th absolute moment of $X_{11}$ is not needed. Only under the condition that $X_{11}$ is in the domain of attraction of the normal distribution, the growth rate of $log p$ can be made to be $o(eta_n)$ for some $eta_nrightarrow 0$ as $nrightarrow infty$. We also establish that the rate of $log p$ can be pushed to $log p =o(n^{1/2})$ if we assume the existence of fourth moment of $X_{ij}$s. By an example, it is shown however that the rate of growth of $log p$ can not further be improved from $n^{1/2}$ as a power of $n$. As an application, we found respecti
We consider the problem of optimal transportation with quadratic cost between a empirical measure and a general target probability on R d , with d $ge$ 1. We provide new results on the uniqueness and stability of the associated optimal transportation
Given ${X_k}$ is a martingale difference sequence. And given another ${Y_k}$ which has dependency within the sequence. Assume ${X_k}$ is independent with ${Y_k}$, we study the properties of the sums of product of two sequences $sum_{k=1}^{n} X_k Y_k$
For probability measures on a complete separable metric space, we present sufficient conditions for the existence of a solution to the Kantorovich transportation problem. We also obtain sufficient conditions (which sometimes also become necessary) fo
Our purpose is to prove central limit theorem for countable nonhomogeneous Markov chain under the condition of uniform convergence of transition probability matrices for countable nonhomogeneous Markov chain in Ces`aro sense. Furthermore, we obtain a
We describe a new framework of a sublinear expectation space and the related notions and results of distributions, independence. A new notion of G-distributions is introduced which generalizes our G-normal-distribution in the sense that mean-uncertai