ﻻ يوجد ملخص باللغة العربية
In the context of superfluid Fermi gases, the Ginzburg - Landau (GL) formalism for the macroscopic wave function has been successfully extended to the whole temperature range where the superfluid state exists. After reviewing the formalism, we first investigate the temperature-dependent correction to the standard GL expansion (which is valid close to $T_{c}$). Deviations from the standard GL formalism are particularly important for the kinetic energy contribution to the GL energy functional, which in turn influences the healing length of the macroscopic wave function. We apply the formalism to variationally describe vortices in a strong-coupling Fermi gas in the BEC-BCS crossover regime, in a two-band system. The healing lengths, derived as variational parameters in the vortex wave function, are shown to exhibit hidden criticality well below $T_{c}$.
The non-Abelian gauge fields play a key role in achieving novel quantum phenomena in condensed-matter and high-energy physics. Recently, the synthetic non-Abelian gauge fields have been created in the neutral degenerate Fermi gases, and moreover, gen
Exactly solvable models of ultracold Fermi gases are reviewed via their thermodynamic Bethe Ansatz solution. Analytical and numerical results are obtained for the thermodynamics and ground state properties of two- and three-component one-dimensional
We propose to detect quadrupole interactions of neutral ultra-cold atoms via their induced mean-field shift. We consider a Mott insulator state of spin-polarized atoms in a two-dimensional optical square lattice. The quadrupole moments of the atoms a
The Fulde-Ferrell (FF) superfluid phase, in which fermions form finite-momentum Cooper pairings, is well studied in spin-singlet superfluids in past decades. Different from previous works that engineer the FF state in spinful cold atoms, we show that
Motivated by a recent experiment [Revelle et al. Phys. Rev. Lett. 117, 235301 (2016)] that characterized the one- to three-dimensional crossover in a spin-imbalanced ultracold gas of $^6$Li atoms trapped in a two-dimensional array of tunnel-coupled t