ترغب بنشر مسار تعليمي؟ اضغط هنا

Steering proton migration in hydrocarbons using intense few-cycle laser fields

148   0   0.0 ( 0 )
 نشر من قبل Matthias K\\\"ubel
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Proton migration is a ubiquitous process in chemical reactions related to biology, combustion, and catalysis. Thus, the ability to control the movement of nuclei with tailored light, within a hydrocarbon molecule holds promise for far-reaching applications. Here, we demonstrate the steering of hydrogen migration in simple hydrocarbons, namely acetylene and allene, using waveform-controlled, few-cycle laser pulses. The rearrangement dynamics are monitored using coincident 3D momentum imaging spectroscopy, and described with a quantum-dynamical model. Our observations reveal that the underlying control mechanism is due to the manipulation of the phases in a vibrational wavepacket by the intense off-resonant laser field.

قيم البحث

اقرأ أيضاً

The laser-induced fragmentation dynamics of this most fundamental polar molecule HeH$^+$ are measured using an ion beam of helium hydride and an isotopologue at various wavelengths and intensities. In contrast to the prevailing interpretation of stro ng-field fragmentation, in which stretching of the molecule results primarily from laser-induced electronic excitation, experiment and theory for nonionizing dissociation, single ionization and double ionization both show that the direct vibrational excitation plays the decisive role here. We are able to reconstruct fragmentation pathways and determine the times at which each ionization step occurs as well as the bond length evolution before the electron removal. The dynamics of this extremely asymmetric molecule contrast the well-known symmetric systems leading to a more general picture of strong-field molecular dynamics and facilitating interpolation to systems between the two extreme cases.
We describe the results of experiments and simulations performed with the aim of extending photoelectron spectroscopy with intense laser pulses to the case of molecular compounds. Dimer frame photoelectron angular distributions generated by double io nization of N$_2$-N$_2$ and N$_2$-O$_2$ van der Waals dimers with ultrashort, intense laser pulses are measured using four-body coincidence imaging with a reaction microscope. To study the influence of the first-generated molecular ion on the ionization behavior of the remaining neutral molecule we employ a two-pulse sequence comprising of a linearly polarized and a delayed elliptically polarized laser pulse that allows distinguishing the two ionization steps. By analysis of the obtained electron momentum distributions we show that scattering of the photoelectron on the neighbouring molecular potential leads to a deformation and rotation of the photoelectron angular distribution as compared to that measured for an isolated molecule. Based on this result we demonstrate that the electron momentum space in the dimer case can be separated, allowing to extract information about the ionization pathway from the photoelectron angular distributions. Our work, when implemented with variable pulse delay, opens up the possibility of investigating light-induced electronic dynamics in molecular dimers using angularly resolved photoelectron spectroscopy with intense laser pulses.
In strong laser fields, sub-femtosecond control of chemical reactions with the carrier-envelope phase (CEP) becomes feasible. We have studied the control of reaction dynamics of acetylene and allene in intense few-cycle laser pulses at 750 nm, where ionic fragments are recorded with a reaction microscope. We find that by varying the CEP and intensity of the laser pulses it is possible to steer the motion of protons in the molecular dications, enabling control over deprotonation and isomerization reactions. The experimental results are compared to predictions from a quantum dynamical model, where the control is based on the manipulation of the phases of a vibrational wave packet by the laser waveform. The measured intensity dependence in the CEP-controlled deprotonation of acetylene is well captured by the model. In the case of the isomerization of acetylene, however, we find differences in the intensity dependence between experiment and theory. For the isomerization of allene, an inversion of the CEP-dependent asymmetry is observed when the intensity is varied, which we discuss in light of the quantum dynamical model. The inversion of the asymmetry is found to be consistent with a transition from non-sequential to sequential double ionization.
A general {it ab-initio} and non-perturbative method to solve the time-dependent Schrodinger equation (TDSE) for the interaction of a strong attosecond laser pulse with a general atom, i.e., beyond the models of quasi-one-electron or quasi-two-electr on targets, is described. The field-free Hamiltonian and the dipole matrices are generated using a flexible $B$-spline $R$-matrix method. This numerical implementation enables us to construct term-dependent, non-orthogonal sets of one-electron orbitals for the bound and continuum electrons. The solution of the TDSE is propagated in time using the Arnoldi-Lanczos method, which does not require the diagonalization of any large matrices. The method is illustrated by an application to the multi-photon excitation and ionization of Ne atoms. Good agreement with $R$-matrix Floquet calculations for the generalized cross sections for two-photon ionization is achieved.
We demonstrate the experimental realization of impulsive alignment of carbonyl sulfide (OCS) molecules at the Low Density Matter Beamline (LDM) at the free-electron laser FERMI. OCS molecules in a molecular beam were impulsively aligned using 200 fs pulses from a near-infrared laser. The alignment was probed through time-delayed ionization above the sulphur 2p edge, resulting in multiple ionization via Auger decay and subsequent Coulomb explosion of the molecules. The ionic fragments were collected using a time-of-flight mass spectrometer and the analysis of ion-ion covariance maps confirmed the correlation between fragments after Coulomb explosion. The analysis of the CO+ and S+ channels allowed us to extract the rotational dynamics, which is in agreement with our theoretical description as well as with previous experiments. This result opens the way for a new class of experiments at LDM within the field of coherent control of molecules with the possibilities that a precisely synchronized optical-pump XUV-probe laser setup like FERMI can offer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا