ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonequilibrium fixed points in longitudinally expanding scalar theories: infrared cascade, Bose condensation and a challenge for kinetic theory

115   0   0.0 ( 0 )
 نشر من قبل Kirill Boguslavski
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In Phys. Rev. Lett. 114 (2015) 6, 061601, we reported on a new universality class for longitudinally expanding systems, encompassing strongly correlated non-Abelian plasmas and $N$-component self-interacting scalar field theories. Using classical-statistical methods, we showed that these systems share the same self-similar scaling properties for a wide range of momenta in a limit where particles are weakly coupled but their occupancy is high. Here we significantly expand on our previous work and delineate two further self-similar regimes. One of these occurs in the deep infrared (IR) regime of very high occupancies, where the nonequilibrium dynamics leads to the formation of a Bose-Einstein Condensate. The universal IR scaling exponents and the spectral index characterizing the isotropic IR distributions are described by an effective theory derived from a systematic large-$N$ expansion at next-to-leading order. Remarkably, this effective theory can be cast as a vertex-resummed kinetic theory. The other novel self-similar regime occurs close to the hard physical scale of the theory, and sets in only at later times. We argue that the important role of the infrared dynamics ensures that key features of our results for scalar and gauge theories cannot be reproduced consistently in conventional kinetic theory frameworks.

قيم البحث

اقرأ أيضاً

We outline a kinetic theory of non-thermal fixed points for the example of a dilute Bose gas, partially reviewing results obtained earlier, thereby extending, complementing, generalizing and straightening them out. We study universal dynamics after a cooling quench, focusing on situations where the time evolution represents a pure rescaling of spatial correlations, with time defining the scale parameter. The non-equilibrium initial condition set by the quench induces a redistribution of particles in momentum space. Depending on conservation laws, this can take the form of a wave-turbulent flux or of a more general self-similar evolution, signaling the critically slowed approach to a non-thermal fixed point. We identify such fixed points using a non-perturbative kinetic theory of collective scattering between highly occupied long-wavelength modes. In contrast, a wave-turbulent flux, possible in the perturbative Boltzmann regime, builds up in a critically accelerated self-similar manner. A key result is the simple analytical universal scaling form of the non-perturbative many-body scattering matrix, for which we lay out the concrete conditions under which it applies. We derive the scaling exponents for the time evolution as well as for the power-law tail of the momentum distribution function, for a general dynamical critical exponent $z$ and an anomalous scaling dimension $eta$. The approach of the non-thermal fixed point is, in particular, found to involve a rescaling of momenta in time $t$ by $t^{beta}$, with $beta=1/z$, within our kinetic approach independent of $eta$. We confirm our analytical predictions by numerically evaluating the kinetic scattering integral as well as the non-perturbative many-body coupling function. As a side result we obtain a possible finite-size interpretation of wave-turbulent scaling recently measured by Navon et al.
The solutions of relativistic viscous hydrodynamics for longitudinal expanding fireballs is investigated with the Navier-Stokes theory and Israel-Stewart theory. The energy and Euler conservation equations for the viscous fluid are derived in Rindler coordinates with the longitudinal expansion effect is small. Under the perturbation assumption, an analytical perturbation solution for the Navier-Stokes approximation and numerical solutions for the Israel-Stewart approximation are presented. The temperature evolution with both shear viscous effect and longitudinal acceleration effect in the longitudinal expanding framework are presented and specifically temperature profile shows symmetry Gaussian shape in the Rindler coordinates. In addition, in the presence of the longitudinal acceleration expanding effect, the results of the Israel-Stewart approximation are compared to the results from Bjorken and Navier-Stokes approximation, and it gives a good description than the Navier-Stokes theories results at the early stages of evolution.
We present real-time lattice simulation results for nonequilibrium quark production from an over-occupied gluon plasma in longitudinally expanding geometry. The quark number density per unit transverse area and rapidity shows almost linear growth in time, and its growth rate appears to be consistent with a simple kinetic theory estimate involving only two-to-two scattering processes in small-angle approximation. We also find that quarks produced at early times satisfy a nonequilibrium scaling law.
We report on a numerical study of the Boltzmann equation including $2leftrightarrow 2$ scatterings of gluons and quarks in an overoccupied Glasma undergoing longitudinal expansion. We find that when a cascade of gluon number to the infrared occurs, c orresponding to an infrared enhancement analogous to a transient Bose-Einstein condensate, gluon distributions qualitatively reproduce the results of classical-statistical simulations for the expanding Glasma. These include key features of the distributions that are not anticipated in the bottom-up thermalization scenario. We also find that quark distributions, like those of gluons, satisfy self-similar scaling distributions in the overoccupied Glasma. We discuss the implications of these results for a deeper understanding of the self-similarity and universality of parton distributions in the Glasma.
High-energy nuclear collisions produce a nonequilibrium plasma of quarks and gluons which thermalizes and exhibits hydrodynamic flow. There are currently no practical frameworks to connect the early particle production in classical field simulations to the subsequent hydrodynamic evolution. We build such a framework using nonequilibrium Greens functions, calculated in QCD kinetic theory, to propagate the initial energy-momentum tensor to the hydrodynamic phase. We demonstrate that this approach can be easily incorporated into existing hydrodynamic simulations, leading to stronger constraints on the energy density at early times and the transport properties of the QCD medium. Based on (conformal) scaling properties of the Greens functions, we further obtain pragmatic bounds for the applicability of hydrodynamics in nuclear collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا