ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure of the photo-catalytically active surface of SrTiO3

65   0   0.0 ( 0 )
 نشر من قبل Xin Huang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A major goal of energy research is to use visible light to cleave water directly, without an applied voltage, into hydrogen and oxygen. Since the initial reports of the ultraviolet (UV) activity of TiO2 and SrTiO3 in the 1970s, researchers have pursued a fundamental understanding of the mechanistic and molecular-level phenomena involved in photo-catalysis. Although it requires UV light, after four decades SrTiO3 is still the gold standard for splitting water. It is chemically stable and catalyzes both the hydrogen and the oxygen reactions without applied bias. While ultrahigh vacuum (UHV) surface science techniques have provided useful insights, we still know relatively little about the structure of electrodes in contact with electrolytes under operating conditions. Here, we report the surface structure evolution of a SrTiO3 electrode during water splitting, before and after training with a positive bias. Operando high-energy X-ray reflectivity measurements demonstrate that training the electrode irreversibly reorders the surface. Scanning electrochemical microscopy (SECM) at open circuit correlates this training with a tripling of the activity toward photo-induced water splitting. A novel first-principles joint density-functional theory (JDFT) simulation constrained to the X-ray data via a generalized penalty function identifies an anatase-like structure for the more active, trained surface.



قيم البحث

اقرأ أيضاً

Titanium-island formation on graphene as a function of defect density is investigated. When depositing titanium on pristine graphene, titanium atoms cluster and form islands with an average diameter of about 10nm and an average height of a few atomic layers. We show that if defects are introduced in the graphene by ion bombardment, the mobility of the deposited titanium atoms is reduced and the average diameter of the islands decreases to 5nm with monoatomic height. This results in an optimized coverage for hydrogen storage applications since the actual titanium surface available per unit graphene area is significantly increased.
In this work, second-generation Car-Parrinello-based QM/MM molecular dynamics simulations of small nanoparticles of NbP, NbAs, TaAs and 1T-TaS$_2$ in water are presented. The first three materials are topological Weyl semimetals, which were recently discovered to be active catalysts in photocatalytic water splitting. The aim of this research was to correlate potential differences in the water structure in the vicinity of the nanoparticle surface with the photocatalytic activity of these materials in light induced proton reduction. The results presented herein allow to explain the catalytic activity of these Weyl semimetals: the most active material, NbP, exhibits a particularly low water coordination near the surface of the nanoparticle, whereas for 1T-TaS$_2$, with the lowest catalytic activity, the water structure at the surface is most ordered. In addition, the photocatalytic activity of several organic and metalorganic photosensitizers in the hydrogen evolution reaction was experimentally investigated with NbP as proton reduction catalyst. Unexpectedly, the charge of the photosensitizer plays a decisive role for the photocatalytic performance.
227 - Yanpeng Yao , Huaxiang Fu 2010
The k-space polarization structure and its strain response in SrTiO3 with rotational instability are studied using a combination of first-principles density functional calculations, modern theory of polarization, and analytic Wannier-function formula tion. (1) As one outcome of this study, we rigorously prove-both numerically and analytically-that folding effect exists in polarization structure. (2) After eliminating the folding effect, we find that the polarization structure for SrTiO3 with rotational instability is still considerably different from that for non-rotational SrTiO3, revealing that polarization structure is sensitive to structure distortion of oxygen-octahedra rotation and promises to be an effective tool for studying material properties. (3) Furthermore, from polarization structure we determine the microscopic Wannier-function interactions in SrTiO3. These interactions are found to vary significantly with and without oxygen-octahedra rotation.
Heterostructures made of transition metal oxides are new tailor-made materials which are attracting much attention. We have constructed a 6-band k.p Hamiltonian and used it within the envelope function method to calculate the subband structure of a v ariety of LaAlO3/SrTiO3 heterostructures. By use of density functional calculations, we determine the k.p parameters describing the conduction band edge of SrTiO3: the three effective mass parameters, L=0.6104 eV AA^2, M=9.73 eV AA^2, N=-1.616 eV AA^2, the spin orbit splitting Delta_SO=28.5 meV and the low temperature tetragonal distortion energy splitting Delta_T=2.1 meV. For confined systems we find strongly anisotropic non-parabolic subbands. As an application we calculate bands, density of states and magnetic energy levels and compare the results to Shubnikov-de Haas quantum oscillations observed in high magnetic fields. For typical heterostructures we find that electric field strength at the interface of F = 0.1 meV/AA for a carrier density of 7.2 10^{12} cm^-2 results in a subband structure that is similar to experimental results.
Many-body descriptors are widely used to represent atomic environments in the construction of machine learned interatomic potentials and more broadly for fitting, classification and embedding tasks on atomic structures. It was generally believed that 3-body descriptors uniquely specify the environment of an atom, up to a rotation and permutation of like atoms. We produce several counterexamples to this belief, with the consequence that any classifier, regression or embedding model for atom-centred properties that uses 3 (or 4)-body features will incorrectly give identical results for different configurations. Writing global properties (such as total energies) as a sum of many atom-centred contributions mitigates, but does not eliminate, the impact of this fundamental deficiency -- explaining the success of current machine-learning force fields. We anticipate the issues that will arise as the desired accuracy increases, and suggest potential solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا