ﻻ يوجد ملخص باللغة العربية
Heterostructures made of transition metal oxides are new tailor-made materials which are attracting much attention. We have constructed a 6-band k.p Hamiltonian and used it within the envelope function method to calculate the subband structure of a variety of LaAlO3/SrTiO3 heterostructures. By use of density functional calculations, we determine the k.p parameters describing the conduction band edge of SrTiO3: the three effective mass parameters, L=0.6104 eV AA^2, M=9.73 eV AA^2, N=-1.616 eV AA^2, the spin orbit splitting Delta_SO=28.5 meV and the low temperature tetragonal distortion energy splitting Delta_T=2.1 meV. For confined systems we find strongly anisotropic non-parabolic subbands. As an application we calculate bands, density of states and magnetic energy levels and compare the results to Shubnikov-de Haas quantum oscillations observed in high magnetic fields. For typical heterostructures we find that electric field strength at the interface of F = 0.1 meV/AA for a carrier density of 7.2 10^{12} cm^-2 results in a subband structure that is similar to experimental results.
Reports of emergent conductivity, superconductivity, and magnetism at oxide interfaces have helped to fuel intense interest in their rich physics and technological potential. Here we employ magnetic force microscopy to search for room-temperature mag
Nanoscale control of the metal-insulator transition in LaAlO3/ SrTiO3 heterostructures can be achieved using local voltages applied by a conductive atomic-force microscope probe. One proposed mechanism for the writing and erasing process involves an
We report superconductivity in quasi-1D nanostructures created at the LaAlO3/SrTiO3 interface. Nanostructures having line widths w~10 nm are formed from the parent two-dimensional electron liquid using conductive atomic force microscope lithography.
Possible ferromagnetism induced in otherwise non-magnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar ox
Here we investigate LaAlO_3-SrTiO_3 heterostructure withdelta-doping of the interface by LaMnO_3 at less than one monolayer. This doping strongly inhibits the formation of mobile electron layer at the interface. This results in giant increase of the