ﻻ يوجد ملخص باللغة العربية
Minimal models are developed to examine the origin of large negative thermal expansion (NTE) in under-constrained systems. The dynamics of these models reveals how underconstraint can organize a thermodynamically extensive manifold of low-energy modes which not only drives NTE but extends across the Brillioun zone. Mixing of twist and translation in the eigenvectors of these modes, for which in ZrW2O8 there is evidence from infrared and neutron scattering measurements, emerges naturally in our model as a signature of the dynamics of underconstraint.
We use a symmetry-motivated approach to analyse neutron pair distribution function data to investigate the mechanism of negative thermal expansion (NTE) in ReO$_3$. This analysis shows that the local structure of ReO$_3$ is dominated by an in-phase o
Materials with negative thermal expansion (NTE), which contract upon heating, are of great interest both technically and fundamentally. Here, we report giant NTE covering room temperature in mechanically milled antiperovksite GaNxMn3 compounds. The m
The thermal expansion at constant pressure of solid CD$_4$ III is calculated for the low temperature region where only the rotational tunneling modes are essential and the effect of phonons and librons can be neglected. It is found that in mK region
While most solids expand when heated, some materials show the opposite behavior: negative thermal expansion (NTE). In polymers and biomolecules, NTE originates from the entropic elasticity of an ideal, freely-jointed chain. The origin of NTE in solid
Floppy Networks (FNs) provide valuable insight into the origin of anomalous mechanical and thermal properties in soft matter systems, from polymers, rubber, and biomolecules to glasses and granular materials. Here, we use the very same FN concept to