ﻻ يوجد ملخص باللغة العربية
Nitrogen-vacancy (NV) centers in diamond have emerged as valuable tools for sensing and polarizing spins. Motivated by potential applications in chemistry, biology, and medicine, we show that NV-based sensors are capable of detecting single spin targets even if they undergo diffusive motion in an ambient thermal environment. Focusing on experimentally relevant diffusion regimes, we derive an effective model for the NV-target interaction, where parameters entering the model are obtained from numerical simulations of the target motion. The practicality of our approach is demonstrated by analyzing two realistic experimental scenarios: (i) time-resolved sensing of a fluorine nuclear spin bound to an N-heterocyclic carbene-ruthenium (NHC-Ru) catalyst that is immobilized on the diamond surface and (ii) detection of an electron spin label by an NV center in a nanodiamond, both attached to a vibrating chemokine receptor in thermal motion. We find in particular that the detachment of a fluorine target from the NHC-Ru carrier molecule can be monitored with a time resolution of a few seconds.
We experimentally demonstrate high degree of polarization of 13C nuclear spins weakly interacting with nitrogen-vacancy (NV) centers in diamond. We combine coherent microwave excitation pulses with optical illumination to provide controlled relaxatio
Diamond based quantum technology is a fast emerging field with both scientific and technological importance. With the growing knowledge and experience concerning diamond based quantum systems, comes an increased demand for performance. Quantum optima
Selective control of qubits in a quantum register for the purposes of quantum information processing represents a critical challenge for dense spin ensembles in solid state systems. Here we present a protocol that achieves a complete set of selective
Quantum emitters coupled to plasmonic nanoantennas produce single photons at unprecedentedly high rates in ambient conditions. This enhancement of quantum emitters radiation rate is based on the existence of optical modes with highly sub-diffraction
Near-surface nitrogen-vacancy (NV) centers have been created in diamond through low energy implantation of 15N to sense electron spins that are external to the diamond. By performing double resonance experiments, we have verified the presence of g=2