ترغب بنشر مسار تعليمي؟ اضغط هنا

The correlation space of Gaussian latent tree models and model selection without fitting

300   0   0.0 ( 0 )
 نشر من قبل Nathaniel Shiers
 تاريخ النشر 2015
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a complete description of possible covariance matrices consistent with a Gaussian latent tree model for any tree. We then present techniques for utilising these constraints to assess whether observed data is compatible with that Gaussian latent tree model. Our method does not require us first to fit such a tree. We demonstrate the usefulness of the inverse-Wishart distribution for performing preliminary assessments of tree-compatibility using semialgebraic constraints. Using results from Drton et al. (2008) we then provide the appropriate moments required for test statistics for assessing adherence to these equality constraints. These are shown to be effective even for small sample sizes and can be easily adjusted to test either the entire model or only certain macrostructures hypothesized within the tree. We illustrate our exploratory tetrad analysis using a linguistic application and our confirmatory tetrad analysis using a biological application.

قيم البحث

اقرأ أيضاً

Gaussian latent tree models, or more generally, Gaussian latent forest models have Fisher-information matrices that become singular along interesting submodels, namely, models that correspond to subforests. For these singularities, we compute the rea l log-canonical thresholds (also known as stochastic complexities or learning coefficients) that quantify the large-sample behavior of the marginal likelihood in Bayesian inference. This provides the information needed for a recently introduced generalization of the Bayesian information criterion. Our mathematical developments treat the general setting of Laplace integrals whose phase functions are sums of squared differences between monomials and constants. We clarify how in this case real log-canonical thresholds can be computed using polyhedral geometry, and we show how to apply the general theory to the Laplace integrals associated with Gaussian latent tree and forest models. In simulations and a data example, we demonstrate how the mathematical knowledge can be applied in model selection.
Gaussian Graphical models (GGM) are widely used to estimate the network structures in many applications ranging from biology to finance. In practice, data is often corrupted by latent confounders which biases inference of the underlying true graphica l structure. In this paper, we compare and contrast two strategies for inference in graphical models with latent confounders: Gaussian graphical models with latent variables (LVGGM) and PCA-based removal of confounding (PCA+GGM). While these two approaches have similar goals, they are motivated by different assumptions about confounding. In this paper, we explore the connection between these two approaches and propose a new method, which combines the strengths of these two approaches. We prove the consistency and convergence rate for the PCA-based method and use these results to provide guidance about when to use each method. We demonstrate the effectiveness of our methodology using both simulations and in two real-world applications.
81 - Piotr Zwiernik 2017
Latent tree models are graphical models defined on trees, in which only a subset of variables is observed. They were first discussed by Judea Pearl as tree-decomposable distributions to generalise star-decomposable distributions such as the latent cl ass model. Latent tree models, or their submodels, are widely used in: phylogenetic analysis, network tomography, computer vision, causal modeling, and data clustering. They also contain other well-known classes of models like hidden Markov models, Brownian motion tree model, the Ising model on a tree, and many popular models used in phylogenetics. This article offers a concise introduction to the theory of latent tree models. We emphasise the role of tree metrics in the structural description of this model class, in designing learning algorithms, and in understanding fundamental limits of what and when can be learned.
203 - Yan Liu , Yuguo Chen 2021
Latent space models are popular for analyzing dynamic network data. We propose a variational approach to estimate the model parameters as well as the latent positions of the nodes in the network. The variational approach is much faster than Markov ch ain Monte Carlo algorithms, and is able to handle large networks. Theoretical properties of the variational Bayes risk of the proposed procedure are provided. We apply the variational method and latent space model to simulated data as well as real data to demonstrate its performance.
96 - Gilles Celeux , 2018
Determining the number G of components in a finite mixture distribution is an important and difficult inference issue. This is a most important question, because statistical inference about the resulting model is highly sensitive to the value of G. S electing an erroneous value of G may produce a poor density estimate. This is also a most difficult question from a theoretical perspective as it relates to unidentifiability issues of the mixture model. This is further a most relevant question from a practical viewpoint since the meaning of the number of components G is strongly related to the modelling purpose of a mixture distribution. We distinguish in this chapter between selecting G as a density estimation problem in Section 2 and selecting G in a model-based clustering framework in Section 3. Both sections discuss frequentist as well as Bayesian approaches. We present here some of the Bayesian solutions to the different interpretations of picking the right number of components in a mixture, before concluding on the ill-posed nature of the question.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا