ﻻ يوجد ملخص باللغة العربية
We provide a complete description of possible covariance matrices consistent with a Gaussian latent tree model for any tree. We then present techniques for utilising these constraints to assess whether observed data is compatible with that Gaussian latent tree model. Our method does not require us first to fit such a tree. We demonstrate the usefulness of the inverse-Wishart distribution for performing preliminary assessments of tree-compatibility using semialgebraic constraints. Using results from Drton et al. (2008) we then provide the appropriate moments required for test statistics for assessing adherence to these equality constraints. These are shown to be effective even for small sample sizes and can be easily adjusted to test either the entire model or only certain macrostructures hypothesized within the tree. We illustrate our exploratory tetrad analysis using a linguistic application and our confirmatory tetrad analysis using a biological application.
Gaussian latent tree models, or more generally, Gaussian latent forest models have Fisher-information matrices that become singular along interesting submodels, namely, models that correspond to subforests. For these singularities, we compute the rea
Gaussian Graphical models (GGM) are widely used to estimate the network structures in many applications ranging from biology to finance. In practice, data is often corrupted by latent confounders which biases inference of the underlying true graphica
Latent tree models are graphical models defined on trees, in which only a subset of variables is observed. They were first discussed by Judea Pearl as tree-decomposable distributions to generalise star-decomposable distributions such as the latent cl
Latent space models are popular for analyzing dynamic network data. We propose a variational approach to estimate the model parameters as well as the latent positions of the nodes in the network. The variational approach is much faster than Markov ch
Determining the number G of components in a finite mixture distribution is an important and difficult inference issue. This is a most important question, because statistical inference about the resulting model is highly sensitive to the value of G. S