ﻻ يوجد ملخص باللغة العربية
For the solution $q(t)=(q_n(t))_{ninmathbb Z}$ to one-dimensional discrete Schrodinger equation $${rm i}dot{q}_n=-(q_{n+1}+q_{n-1})+ V(theta+nomega) q_n, quad ninmathbb Z,$$ with $omegainmathbb R^d$ Diophantine, and $V$ a small real-analytic function on $mathbb T^d$, we consider the growth rate of the diffusion norm $|q(t)|_{D}:=left(sum_{n}n^2|q_n(t)|^2right)^{frac12}$ for any non-zero $q(0)$ with $|q(0)|_{D}<infty$. We prove that $|q(t)|_{D}$ grows {it linearly} with the time $t$ for any $thetainmathbb T^d$ if $V$ is sufficiently small.
This paper is about the scattering theory for one-dimensional matrix Schrodinger operators with a matrix potential having a finite first moment. The transmission coefficients are analytically continued and extended to the band edges. An explicit expr
We study the asymptotic behavior of ground state energy for Schrodinger-Poisson-Slater energy functional. We show that ground state energy restricted to radially symmetric functions is above the ground state energy when the number of particles is sufficiently large.
We study sufficient conditions for the absence of positive eigenvalues of magnetic Schrodinger operators in $mathbb{R}^d,, dgeq 2$. In our main result we prove the absence of eigenvalues above certain threshold energy which depends explicitly on the
We study the one-dimensional Schrodinger operators $$ S(q)u:=-u+q(x)u,quad uin mathrm{Dom}left(S(q)right), $$ with $1$-periodic real-valued singular potentials $q(x)in H_{operatorname{per}}^{-1}(mathbb{R},mathbb{R})$ on the Hilbert space $L_{2}left(m
We prove the existence of ground states for the semi-relativistic Schrodinger-Poisson-Slater energy $$I^{alpha,beta}(rho)=inf_{substack{uin H^frac 12(R^3) int_{R^3}|u|^2 dx=rho}} frac{1}{2}|u|^2_{H^frac 12(R^3)} +alphaintint_{R^{3}timesR^{3}} frac{|