B[e] supergiants are evolved massive stars with a complex circumstellar environment. A number of important emission features probe the structure and the kinematics of the circumstellar material. In our survey of Magellanic Cloud B[e] supergiants we focus on the [OI] and [CaII] emission lines, which we identified in four more objects.
Discovered over 30 years ago, the B[e] phenomenon has not yet revealed all its puzzles. New objects that exhibit it are being discovered in the Milky Way, and properties of known objects are being constrained. We review recent findings about objects
of this class and their subgroups as well as discuss new results from studies of the objects with yet unknown nature. In the Magellanic Clouds, the population of such objects has been restricted to supergiants. We present new candidates with apparently lower luminosities found in the LMC.
The characterisation of the multiplicity of high-mass stars is of fundamental importance to understand their evolution, the diversity of observed core-collapse supernovae and the formation of gravitational wave progenitor systems. Despite that, until
recently, one of the final phases of massive star evolution -- the cool supergiant phase -- has received comparatively little attention. In this study we aim to explore the multiplicity among the cool supergiants (CSGs) in the Large and Small Magellanic Clouds (LMC and SMC, respectively). To do this we compile extensive archival radial velocity (RV) measurements for over 1000 CSGs from the LMC and SMC, spanning a baseline of over 40 years. By statistically correcting the RV measurements of each stellar catalogue to the Gaia DR2 reference frame we are able to effectively compare these diverse observations. We identify 45 CSGs where RV variations cannot be explained through intrinsic variability, and are hence considered binary systems. We obtain a minimum binary fraction of $15pm4%$ for the SMC and of $14pm5%$ for the LMC. Combining these results, we determine a minimum binary fraction of $15pm3%$ for CSGs. These results are in good agreement with previous results which apply a correction to account for observational biases. These results add strength to the hypothesis that the binary fraction of CSGs is significantly lower than their main-sequence counterparts. Going forward, we stress the need for long-baseline multi-epoch spectroscopic surveys to cover the full parameter space of CSG binary systems.
The effects of rapid rotation and bi--stability upon the density contrast between the equatorial and polar directions of a B[e] supergiant are investigated. Based on a new slow solution for different high rotational radiation--driven winds and the fa
ct that bi--stability allows a change in the line--force parameters ($alpha$, $k$, and $delta$), the equatorial densities are about $10^2$--$10^3$ times higher than the polar ones. These values are in qualitative agreement with the observations. This calculation also permits to obtain the aperture angle of the disk.
We discuss the nature of the circumstellar envelopes around the B[e] supergiants (B[e]SG) in the Magellanic Clouds (MC). Contrary to those in the Galaxy, the MC B[e]SG have a well defined luminosity and can be considered members of a well defined cla
ss. We discuss spectroscopy and optical broadband polarimetry and spectropolarimetry data. These data show for the first time detailed changes in the polarization across several spectral features. We show that the envelopes of the B[e]SG are generally variable. Broadband polarimetry data show that the envelopes are definitely non-spherically symmetric and large non-axisymmetric ejections may occur. In addition to that, spectropolarimetry is coming of age as a tool to study the B[e]SG envelope structure.
In this study, we conduct a pilot program aimed at the red supergiant population of the Magellanic Clouds. We intend to extend the current known sample to the unexplored low end of the brightness distribution of these stars, building a more represent
ative dataset with which to extrapolate their behaviour to other Galactic and extra-galactic environments. We select candidates using only near infrared photometry, and with medium resolution multi-object spectroscopy, we perform spectral classification and derive their line-of-sight velocities, confirming the nature of the candidates and their membership to the clouds. Around two hundred new RSGs have been detected, hinting at a yet to be observed large population. Using near and mid infrared photometry we study the brightness distribution of these stars, the onset of mass-loss and the effect of dust in their atmospheres. Based on this sample, new a priori classification criteria are investigated, combining mid and near infrared photometry to improve the observational efficiency of similar programs as this.