ﻻ يوجد ملخص باللغة العربية
The general Dirac equation in 1+1 dimensions with a potential with a completely general Lorentz structure is studied. Considering mixed vector-scalar-pseudoscalar square potentials, the states of relativistic fermions are investigated. This relativistic problem can be mapped into a effective Schr{o}dinger equation for a square potential with repulsive and attractive delta-functions situated at the borders. An oscillatory transmission coefficient is found and resonant state energies are obtained. In a special case, the same bound energy spectrum for spinless particles is obtained, confirming the predictions of literature. We showed that existence of bound-state solutions are conditioned by the intensity of the pseudoscalar potential, which posses a critical value.
The dynamics of relativistic (scalar and vector) bosons through nonminimal vector square (well and barrier) potentials is studied in the Duffin-Kemmer-Petiau (DKP) formalism. We show that the problem can be mapped in effective Schrodinger equations f
A previous formal derivation of the effective chiral Lagrangian for low-lying pseudoscalar mesons from first-principles QCD without approximations [Wang et al., Phys. Rev. D61, (2000) 54011] is generalized to further include scalar, vector, and axial
One-dimensional PT-symmetric quantum-mechanical Hamiltonians having continuous spectra are studied. The Hamiltonians considered have the form $H=p^2+V(x)$, where $V(x)$ is odd in $x$, pure imaginary, and vanishes as $|x|toinfty$. Five PT-symmetric po
With a view toward application of the Pauli-Villars regularization method to the Casimir energy of boundaries, we calculate the expectation values of the components of the stress tensor of a confined massive field in 1+1 space-time dimensions. Previo
The relativistic quantum motion of scalar bosons under the influence of a full vector (minimal $A^{mu}$ and nonminimal $X^{mu}$) and scalar ($V_{s}$) interactions embedded in the background of a cosmic string is explored in the context of the Klein-G