ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of the radio wavefront of air showers with LOPES measurements and CoREAS simulations (ARENA 2014)

90   0   0.0 ( 0 )
 نشر من قبل Frank Schr\\\"oder
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the radio wavefront of cosmic-ray air showers with LOPES measurements and CoREAS simulations: the wavefront is of approximately hyperbolic shape and its steepness is sensitive to the shower maximum. For this study we used 316 events with an energy above 0.1 EeV and zenith angles below $45^circ$ measured by the LOPES experiment. LOPES was a digital radio interferometer consisting of up to 30 antennas on an area of approximately 200 m x 200 m at an altitude of 110 m above sea level. Triggered by KASCADE-Grande, LOPES measured the radio emission between 43 and 74 MHz, and our analysis might strictly hold only for such conditions. Moreover, we used CoREAS simulations made for each event, which show much clearer results than the measurements suffering from high background. A detailed description of our result is available in our recent paper published in JCAP09(2014)025. The present proceeding contains a summary and focuses on some additional aspects, e.g., the asymmetry of the wavefront: According to the CoREAS simulations the wavefront is slightly asymmetric, but on a much weaker level than the lateral distribution of the radio amplitude.

قيم البحث

اقرأ أيضاً

Cosmic ray air showers emit radio pulses at MHz frequencies, which can be measured with radio antenna arrays - like LOPES at the Karlsruhe Institute of Technology in Germany. To improve the understanding of the radio emission, we test theoretical des criptions with measured data. The observables used for these tests are the absolute amplitude of the radio signal, and the shape of the radio lateral distribution. We compare lateral distributions of more than 500 LOPES events with two recent and public Monte Carlo simulation codes, REAS 3.11 and CoREAS (v 1.0). The absolute radio amplitudes predicted by REAS 3.11 are in good agreement with the LOPES measurements. The amplitudes predicted by CoREAS are lower by a factor of two, and marginally compatible with the LOPES measurements within the systematic scale uncertainties. In contrast to any previo
The LOPES experiment, a digital radio interferometer located at KIT (Karlsruhe Institute of Technology), obtained remarkable results for the detection of radio emission from extensive air showers at MHz frequencies. Features of the radio lateral dist ribution function (LDF) measured by LOPES are explored in this work for a precise reconstruction of two fundamental air shower parameters: the primary energy and the shower Xmax. The method presented here has been developed on (REAS3-)simulations, and is applied to LOPES measurements. Despite the high human-made noise at the LOPES site, it is possible to reconstruct both the energy and Xmax for individual events. On the one hand, the energy resolution is promising and comparable to the one of the co-located KASCADE-Grande experiment. On the other hand, Xmax values are reconstructed with the LOPES measurements with a resolution of 90 g/cm2 . A precision on Xmax better than 30 g/cm2 is predicted and achievable in a region with a lower human-made noise level.
CoREAS is a Monte Carlo code for the simulation of radio emission from extensive air showers. It implements the endpoint formalism for the calculation of electromagnetic radiation directly in CORSIKA. As such, it is parameter-free, makes no assumptio ns on the emission mechanism for the radio signals, and takes into account the complete complexity of the electron and positron distributions as simulated by CORSIKA. In this article, we illustrate the capabilities of CoREAS with simulations carried out in different frequency ranges from tens of MHz up to GHz frequencies, and describe in particular the emission characteristics at high frequencies due to Cherenkov effects arising from the varying refractive index of the atmosphere.
CoREAS is a Monte Carlo simulation code for the calculation of radio emission from extensive air showers. It is based on the endpoint formalism for radiation from moving charges implemented directly in CORSIKA. Consequently, the full complexity of th e air-shower physics is taken into account without the need for approximations or assumptions on the emission mechanism. We present results of simulations for an unthinned shower performed with CoREAS for both MHz and GHz frequencies. At MHz frequencies, the simulations predict the well-known mixture of geomagnetic and charge excess radiation. At GHz frequencies, the emission is strongly influenced by Cherenkov effects arising from the varying refractive index in the atmosphere. In addition, a qualitative difference in the symmetry of the GHz radiation pattern is observed when compared to the ones at lower frequencies. We also discuss the strong increase in the ground area subtended by the radio emission when going from near-vertical to very inclined geometries, making very inclined air showers the most promising ones for cosmic ray radio detection.
Precise measurements of the radio emission by cosmic ray air showers require an adequate treatment of noise. Unlike to usual experiments in particle physics, where noise always adds to the signal, radio noise can in principle decrease or increase the signal if it interferes by chance destructively or constructively. Consequently, noise cannot simply be subtracted from the signal, and its influence on amplitude and time measurement of radio pulses must be studied with care. First, noise has to be determined consistently with the definition of the radio signal which typically is the maximum field strength of the radio pulse. Second, the average impact of noise on radio pulse measurements at individual antennas is studied for LOPES. It is shown that a correct treatment of noise is especially important at low signal-to-noise ratios: noise can be the dominant source of uncertainty for pulse height and time measurements, and it can systematically flatten the slope of lateral distributions. The presented method can also be transfered to other experiments in radio and acoustic detection of cosmic rays and neutrinos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا