ترغب بنشر مسار تعليمي؟ اضغط هنا

On noise treatment in radio measurements of cosmic ray air showers

191   0   0.0 ( 0 )
 نشر من قبل Frank Schr\\\"oder
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Precise measurements of the radio emission by cosmic ray air showers require an adequate treatment of noise. Unlike to usual experiments in particle physics, where noise always adds to the signal, radio noise can in principle decrease or increase the signal if it interferes by chance destructively or constructively. Consequently, noise cannot simply be subtracted from the signal, and its influence on amplitude and time measurement of radio pulses must be studied with care. First, noise has to be determined consistently with the definition of the radio signal which typically is the maximum field strength of the radio pulse. Second, the average impact of noise on radio pulse measurements at individual antennas is studied for LOPES. It is shown that a correct treatment of noise is especially important at low signal-to-noise ratios: noise can be the dominant source of uncertainty for pulse height and time measurements, and it can systematically flatten the slope of lateral distributions. The presented method can also be transfered to other experiments in radio and acoustic detection of cosmic rays and neutrinos.

قيم البحث

اقرأ أيضاً

For fifty years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radi o-frequency (RF) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of RF emission, which are relied upon in ultra-high-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.
89 - R. Smida , F. Werner , R. Engel 2013
We report on the first direct measurement of the basic features of microwave radio emission from extensive air showers. Using a trigger provided by the KASCADE-Grande air shower array, the signals of the microwave antennas of the CROME (Cosmic-Ray Ob servation via Microwave Emission) experiment have been read out and searched for signatures of radio emission by high-energy air showers. Microwave signals have been detected for more than 30 showers with energies above $3times10^{16}$,eV. The observations presented in this Letter are consistent with a mainly forward-beamed, coherent and polarised emission process in the GHz frequency range. An isotropic, unpolarised radiation is disfavoured as the dominant emission model. The measurements show that microwave radiation offers a new means of studying air showers at very high energy.
81 - T. Huege , J.D. Bray , S. Buitink 2014
Supplemented with suitable buffering techniques, the low-frequency part of the SKA can be used as an ultra-precise detector for cosmic-ray air showers at very high energies. This would enable a wealth of scientific applications: the physics of the tr ansition from Galactic to extragalactic cosmic rays could be probed with very high precision mass measurements, hadronic interactions could be studied up to energies well beyond the reach of man-made particle accelerators, air shower tomography could be performed with very high spatial resolution exploiting the large instantaneous bandwidth and very uniform instantaneous $u$-$v$ coverage of SKA1-LOW, and the physics of thunderstorms and possible connections between cosmic rays and lightning initiation could be studied in unprecedented levels of detail. In this article, we describe the potential of the SKA as an air shower radio detector from the perspective of existing radio detection efforts and discuss the associated technical requirements.
We present an improved method for the precise reconstruction of cosmic ray air showers above $10^{17}$ eV with sparse radio arrays. The method is based on the comparison of predictions for radio pulse shapes by CoREAS simulations to measured pulses. We applied our method to the data of Tunka-Rex, a 1 km$^2$ radio array in Siberia operating in the frequency band of 30-80 MHz. Tunka-Rex is triggered by the air-Cherenkov detector Tunka-133 and by scintillators (Tunka-Grande). The instrument collects air-shower data since 2012. The present paper describes updated data and signal analyses of Tunka-Rex and details of a new method applied. After efficiency cuts, when Tunka-Rex reaches its full efficiency, the energy resolution of about 10% given by the new method has reached the limit of systematic uncertainties due to the calibration uncertainty and shower-to-shower fluctuations. At the same time the shower maximum reconstruction is significantly improved up to an accuracy of 35 g/cm$^2$ compared to the previous method based on the slope of the lateral distribution. We also define and now achieved conditions of the measurements, at which the shower maximum resolution of Tunka-Rex reaches a value of 25 g/cm$^2$ and becomes competitive to optical detectors. To check and validate our reconstruction and efficiency cuts we compare individual events to the reconstruction of Tunka-133. Furthermore, we compare the mean of shower maximum as a function of primary energy to the measurements of other experiments.
400 - R. Smida , F. Werner , R. Engel 2014
We report the first direct measurement of the overall characteristics of microwave radio emission from extensive air showers. Using a trigger provided by the KASCADE-Grande air shower array, the signals of the microwave antennas of the CROME (Cosmic- Ray Observation via Microwave Emission) experiment have been read out and searched for signatures of radio emission by high-energy air showers in the GHz frequency range. Microwave signals have been detected for more than 30 showers with energies above 3*10^16 eV. The observations presented in this Letter are consistent with a mainly forward-directed and polarised emission process in the GHz frequency range. The measurements show that microwave radiation offers a new means of studying air showers at energies above 10^17 eV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا