ﻻ يوجد ملخص باللغة العربية
PSR J102347.6+003841 is a radio pulsar system with a spin period of 1.69 ms and an orbital period of 4.75 hours. Uniquely, it undergoes periods of transient accretion from its companion star: it occupies an important position in the evolutionary track from X-ray binary to isolated millisecond radio pulsar. Here we present a spectroscopic study of this system showing late-type absorption features which match those of a G2V star. We find a semiamplitude of $286 pm 3$ kms$^{-1}$ and a best fit orbital period of 0.1980966(1) days. We combine these measurements with optical photometry which suggests the secondary star may be underfilling its Roche lobe by between 15% and 20%. We weakly constrain the mass of the neutron star to be $leq$ 2.2 M$_odot$ at the 2$sigma$ level. We also discuss the possible origins of the H$alpha$ emission line in our template subtracted, averaged spectrum. Finally we present and discuss new optical photometry of J1023 taken during the recent outburst of the system.
The evolution of triples has not attracted much attention in the literature, although their evolution can be dramatically different from binaries and single stars. Triples are quite common, and we find that for about 1% of the triples in the Tokovini
We investigate the effects of mass transfer and gravitational wave (GW) radiation on the orbital evolution of contact neutron-star-white-dwarf (NS-WD) binaries, and the detectability of these binaries by space GW detectors (e.g., Laser Interferometer
We report on observations of the unusual neutron-star binary system FIRST J102347.6+003841 carried out using the XMM-Newton satellite. This system consists of a radio millisecond pulsar in an 0.198-day orbit with a ~0.2 solar-mass Roche-lobe-filling
In this study, we concentrate on the formation and evolution of hot subdwarfs binaries through the stable Roche lobe overflow (RLOF) channel of intermediate-mass binaries. We aim at setting out the properties of hot subdwarfs and their progenitors, s
We report the discovery of the first short period binary in which a hot subdwarf star (sdOB) fills its Roche lobe and started mass transfer to its companion. The object was discovered as part of a dedicated high-cadence survey of the Galactic Plane n