ﻻ يوجد ملخص باللغة العربية
In this study, we concentrate on the formation and evolution of hot subdwarfs binaries through the stable Roche lobe overflow (RLOF) channel of intermediate-mass binaries. We aim at setting out the properties of hot subdwarfs and their progenitors, so that we can understand the formation and evolution of hot subdwarfs comprehensively. We have obtained the ranges of the initial parameters of progenitor binaries and the properties of hot subdwarfs through the stable RLOF channel of intermediate-mass binaries, e.g. mass, envelope mass and age of hot subdwarfs. We have found that hot subdwarfs could be formed through the stable Roche lobe overflow at main sequence and Hertzsprung gap. We have also found that some subdwarf B or OB stars have anomalous high mass (around 1 solar mass) with thick envelope (0.07 solar mass to 0.16 solar mass) in our models. By comparing our theoretical results with observations on the hot subdwarfs in open clusters, we suppose a quantity of hot subdwarfs in binary systems might be found in open clusters in the future.
One of the important issues regarding the final evolution of stars is the impact of binarity. A rich zoo of peculiar, evolved objects are born from the interaction between the loosely bound envelope of a giant, and the gravitational pull of a compani
We report the discovery of the first short period binary in which a hot subdwarf star (sdOB) fills its Roche lobe and started mass transfer to its companion. The object was discovered as part of a dedicated high-cadence survey of the Galactic Plane n
We find that applying a theoretical wind mass-loss rate from Monte Carlo radiative transfer models for hydrogen-deficient stars results in significantly more leftover hydrogen following stable mass transfer through Roche-lobe overflow than when we us
The destruction of planets by migration into the star will release significant amounts of energy and material, which will present opportunities to observational study planets in new ways. To observe planet destruction, it is important to understand t
Symbiotic stars are interacting binaries with one of the longest orbital periods. Since they can contain a massive white dwarf with a high accretion rate they are considered a possible type Ia supernovae (SNe Ia) progenitors. Among symbiotic binaries