ﻻ يوجد ملخص باللغة العربية
Wavefront sensing and control are important for enabling one of the key advantages of using large apertures, namely higher angular resolutions. Pyramid wavefront sensors are becoming commonplace in new instrument designs owing to their superior sensitivity. However, one remaining roadblock to their widespread use is the fabrication of the pyramidal optic. This complex optic is challenging to fabricate due to the pyramid tip, where four planes need to intersect in a single point. Thus far, only a handful of these have been produced due to the low yields and long lead times. To address this, we present an alternative implementation of the pyramid wavefront sensor that relies on two roof prisms instead. Such prisms are easy and inexpensive to source. We demonstrate the successful operation of the roof prism pyramid wavefront sensor on a 8-m class telescope, at visible and near infrared wavelengths ---for the first time using a SAPHIRA HgCdTe detector without modulation for a laboratory demonstration---, and elucidate how this sensor can be used more widely on wavefront control test benches and instruments.
The concept of pyramid wavefront sensors (PWFS) has been around about a decade by now. However, there is still a great lack of characterizing measurements that allow the best operation of such a system under real life conditions at an astronomical te
MAPS, MMT Adaptive optics exoPlanet characterization System, is the upgrade of legacy 6.5m MMT adaptive optics system. It is an NSF MSIP-funded project that includes (i) refurbishing of the MMT Adaptive Secondary Mirror (ASM), (ii) new high sensitive
Adaptive optics systems correct atmospheric turbulence in real time. Most adaptive optics systems used routinely correct in the near infrared, at wavelengths greater than 1 micron. MagAO- X is a new extreme adaptive optics (ExAO) instrument that will
Extremely Large Telescopes have overwhelmingly opted for the Pyramid wavefront sensor (PyWFS) over the more widely used Shack-Hartmann WaveFront Sensor (SHWFS) to perform their Single Conjugate Adaptive Optics (SCAO) mode. The PyWFS, a sensor based o
Extreme adaptive optics (AO) is crucial for enabling the contrasts needed for ground-based high contrast imaging instruments to detect exoplanets. Pushing exoplanet imaging detection sensitivities towards lower mass, closer separations, and older pla