ترغب بنشر مسار تعليمي؟ اضغط هنا

Intracellular impedance measurements reveal non-ohmic properties of the extracellular medium around neurons

269   0   0.0 ( 0 )
 نشر من قبل Alain Destexhe
 تاريخ النشر 2015
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electrical properties of extracellular space around neurons are important to understand the genesis of extracellular potentials, as well as for localizing neuronal activity from extracellular recordings. However, the exact nature of these extracellular properties is still uncertain. We introduce a method to measure the impedance of the tissue, and which preserves the intact cell-medium interface, using whole-cell patch-clamp recordings in vivo and in vitro. We find that neural tissue has marked non-ohmic and frequency-filtering properties, which are not consistent with a resistive (ohmic) medium, as often assumed. In contrast, using traditional metal electrodes provides very different results, more consistent with a resistive medium. The amplitude and phase profiles of the measured impedance are consistent with the contribution of ionic diffusion. We also show that the impact of such frequency-filtering properties is possibly important on the genesis of local field potentials, as well as on the cable properties of neurons. The present results show non-ohmic properties of the extracellular medium around neurons, and suggest that source estimation methods, as well as the cable properties of neurons, which all assume ohmic extracellular medium, may need to be re-evaluated.

قيم البحث

اقرأ أيضاً

Since the early work of Bernard Katz, the process of cellular chemical communication via exocytosis, quantal release, has been considered to be all or none. Recent evidence has shown exocytosis to be partial or subquantal at single-cell model systems , but there is a need to understand this at communicating nerve cells. Partial release allows nerve cells to control the signal at the site of release during individual events, where the smaller the fraction released, the greater the range of regulation. Here we show that the fraction of the vesicular octopamine content released from a living Drosophila larval neuromuscular neuron is very small. The percentage of released molecules was found to be only 4.5% for simple events and 10.7% for complex (i.e., oscillating or flickering) events. This large content, combined with partial release controlled by fluctuations of the fusion pore, offers presynaptic plasticity that can be widely regulated. Two works published in 2010 suggested that the Katz principle, [1] was incorrect for all-or-none release and that only part of the chemical load of vesicles was released during exocytosis, at least as measured as a full spike during amperometry. [2] The combination of electrochemical methods to measure both release and vesicle content in 2015 added a wealth of information to support the concept of partial release in exocytosis. [3] Additionally, this has recently been supported by work with TIRF microscopy showing subquantal release from vesicles in adrenal chromaffin cells and using super-resolution STED microscopy. [4] It appears that the full event generally involves release of only part of the load of chemical messenger in single-cell model systems like adrenal chromaffin and PC12 cells. Is this also true at living neurons in a nervous system and to what extent? To answer this critical question, we quantified the number of octopamine molecules in the neuromuscular neurons of Drosophila larvae by adapting an amperometric technique developed in our
Over the past decades, the neuropsychological science community has endeavored to determine the number and nature of distinguishable human cognitive abilities. Based on covariance structure analyses of inter-individual performance differences in mult iple cognitive tasks, the ability structure has been substantiated with sufficient consensus. However, there remains a crucial open question that must be answered to develop unified theoretical views and translations toward neuropsychological applications: Is the cognitive ability structure ascertained at the behavioral level similarly reflected in the anatomical and functional properties of the brain? In the current study, we explored the cognitive ability structure derived from positive and negative networks reflected by the brains anatomical properties (thickness, myelination, curvature, and sulcus depth) that were found to be associated with performance in 15 cognitive tasks. The derived neurometric ontological structure was contrasted with the entities of psychometric ontology. Overall, we observed that the brain-derived ontological structures are partly consistent with each other, but also show interesting differences that complement the psychometric ontology. Moreover, we discovered that brain areas associated with the inferred abilities are segregated, with little or no overlap between abilities. Nevertheless, they are also integrated as they are densely connected by white matter projections with an average connection density higher than the brain connectome. The consistency and differences between psychometric and neurometric ontologies are crucial for theory building, diagnostics, and neuropsychological therapy, which highlights the need for the simultaneous and complementary consideration.
As an emerging technology, transcranial focused ultrasound has been demonstrated to successfully evoke motor responses in mice, rabbits, and sensory/motor responses in humans. Yet, the spatial resolution of ultrasound does not allow for high-precisio n stimulation. Here, we developed a tapered fiber optoacoustic emitter (TFOE) for optoacoustic stimulation of neurons with an unprecedented spatial resolution of 20 microns, enabling selective activation of single neurons or subcellular structures, such as axons and dendrites. A single acoustic pulse of 1 microsecond converted by the TFOE from a single laser pulse of 3 nanoseconds is shown as the shortest acoustic stimuli so far for successful neuron activation. The highly localized ultrasound generated by the TFOE made it possible to integrate the optoacoustic stimulation and highly stable patch clamp recording on single neurons. Direct measurements of electrical response of single neurons to acoustic stimulation, which is difficult for conventional ultrasound stimulation, have been demonstrated for the first time. By coupling TFOE with ex vivo brain slice electrophysiology, we unveil cell-type-specific response of excitatory and inhibitory neurons to acoustic stimulation. These results demonstrate that TFOE is a non-genetic single-cell and sub-cellular modulation technology, which could shed new insights into the mechanism of neurostimulation.
Zinc, a suspected potentiator of learning and memory, is shown to affect exocytotic release and storage in neurotransmitter-containing vesicles. Structural and size analysis of the vesicular dense core and halo using transmission electron microscopy was combined with single-cell amperometry to study the vesicle size changes induced after zinc treatment and to compare these changes to theoretical predictions based on the concept of partial release as opposed to full quantal release. This powerful combined analytical approach establishes the existence of an unsuspected strong link between vesicle structure and exocytotic dynamics which can be used to explain the mechanism of regulation of synaptic plasticity by Zn 2+ through modulation of neurotransmitter release.
In this viewpoint article, we discuss the electric properties of the medium around neurons, which are important to correctly interpret extracellular potentials or electric field effects in neural tissue. We focus on how these electric properties shap e the frequency scaling of brain signals at different scales, such as intracellular recordings, the local field potential (LFP), the electroencephalogram (EEG) or the magnetoencephalogram (MEG). These signals display frequency-scaling properties which are not consistent with resistive media. The medium appears to exert a frequency filtering scaling as $1/sqrt{f}$, which is the typical frequency scaling of ionic diffusion. Such a scaling was also found recently by impedance measurements in physiological conditions. Ionic diffusion appears to be the only possible explanation to reconcile these measurements and the frequency-scaling properties found in different brain signals. However, other measurements suggest that the extracellular medium is essentially resistive. To resolve this discrepancy, we show new evidence that metal-electrode measurements can be perturbed by shunt currents going through the surface of the brain. Such a shunt may explain the contradictory measurements, and together with ionic diffusion, provides a framework where all observations can be reconciled. Finally, we propose a method to perform measurements avoiding shunting effects, thus enabling to test the predictions of this framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا