ترغب بنشر مسار تعليمي؟ اضغط هنا

A framework to reconcile frequency scaling measurements, from intracellular recordings, local-field potentials, up to EEG and MEG signals

63   0   0.0 ( 0 )
 نشر من قبل Alain Destexhe
 تاريخ النشر 2016
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this viewpoint article, we discuss the electric properties of the medium around neurons, which are important to correctly interpret extracellular potentials or electric field effects in neural tissue. We focus on how these electric properties shape the frequency scaling of brain signals at different scales, such as intracellular recordings, the local field potential (LFP), the electroencephalogram (EEG) or the magnetoencephalogram (MEG). These signals display frequency-scaling properties which are not consistent with resistive media. The medium appears to exert a frequency filtering scaling as $1/sqrt{f}$, which is the typical frequency scaling of ionic diffusion. Such a scaling was also found recently by impedance measurements in physiological conditions. Ionic diffusion appears to be the only possible explanation to reconcile these measurements and the frequency-scaling properties found in different brain signals. However, other measurements suggest that the extracellular medium is essentially resistive. To resolve this discrepancy, we show new evidence that metal-electrode measurements can be perturbed by shunt currents going through the surface of the brain. Such a shunt may explain the contradictory measurements, and together with ionic diffusion, provides a framework where all observations can be reconciled. Finally, we propose a method to perform measurements avoiding shunting effects, thus enabling to test the predictions of this framework.



قيم البحث

اقرأ أيضاً

Intracellular recordings of neuronal membrane potential are a central tool in neurophysiology. In many situations, especially in vivo, the traditional limitation of such recordings is the high electrode resistance, which may cause significant measure ment errors. We introduce a computer-aided technique, Active Electrode Compensation (AEC), based on a digital model of the electrode interfaced in real time with the electrophysiological setup. The characteristics of this model are first estimated using white noise current injection. The electrode and membrane contribution are digitally separated, and the recording is then made by online subtraction of the electrode contribution. Tests comparing AEC to other techniques demonstrate that it yields recordings with improved accuracy. It enables high-frequency recordings in demanding conditions, such as injection of conductance noise in dynamic-clamp mode, not feasible with a single high resistance electrode until now. AEC should be particularly useful to characterize fast phenomena in neurons, in vivo and in vitro.
Objective: To quantify the effect of inhaled 5% carbon-dioxide/95% oxygen on EEG recordings from patients in non-convulsive status epilepticus (NCSE). Methods: Five children of mixed aetiology in NCSE were given high flow of inhaled carbogen (5% carb on dioxide/95% oxygen) using a face mask for maximum 120s. EEG was recorded concurrently in all patients. The effects of inhaled carbogen on patient EEG recordings were investigated using band-power, functional connectivity and graph theory measures. Carbogen effect was quantified by measuring effect size (Cohens d) between before, during and after carbogen delivery states. Results: Carbogens apparent effect on EEG band-power and network metrics across all patients for before-during and before-after inhalation comparisons was inconsistent across the five patients. Conclusion: The changes in different measures suggest a potentially non-homogeneous effect of carbogen on the patients EEG. Different aetiology and duration of the inhalation may underlie these non-homogeneous effects. Tuning the carbogen parameters (such as ratio between CO2 and O2, duration of inhalation) on a personalised basis may improve seizure suppression in future.
We present a novel solution to the problem of localization of MEG and EEG brain signals. The solution is sequential and iterative, and is based on minimizing the least-squares (LS)criterion by the Alternating Projection (AP) algorithm, which is well known in the context of array signal processing. Unlike existing scanning solutions belonging to the beamformer and multiple-signal classification (MUSIC) families, the algorithm has good performance in low signal-to-noise ratio (SNR) and can cope with closely spaced sources and any mixture of correlated sources. Results from simulated and experimental MEG data from a real phantom demonstrated robust performance across an extended SNR range, the entire inter-source correlation range, and across multiple sources, with consistently superior localization accuracy than popular scanning methods.
Local field potentials (LFPs) sampled with extracellular electrodes are frequently used as a measure of population neuronal activity. However, relating such measurements to underlying neuronal behaviour and connectivity is non-trivial. To help study this link, we developed the Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX). We first identified a reduced neuron model that retained the spatial and frequency filtering characteristics of extracellular potentials from neocortical neurons. We then developed VERTEX as an easy-to-use Matlab tool for simulating LFPs from large populations (>100 000 neurons). A VERTEX-based simulation successfully reproduced features of the LFPs from an in vitro multi-electrode array recording of macaque neocortical tissue. Our model, with virtual electrodes placed anywhere in 3D, allows direct comparisons with the in vitro recording setup. We envisage that VERTEX will stimulate experimentalists, clinicians, and computational neuroscientists to use models to understand the mechanisms underlying measured brain dynamics in health and disease.
Simultaneously recorded electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can be used to non-invasively measure the spatiotemporal dynamics of the human brain. One challenge is dealing with the artifacts that each modality introduces into the other when the two are recorded concurrently, for example the ballistocardiogram (BCG). We conducted a preliminary comparison of three different MR compatible EEG recording systems and assessed their performance in terms of single-trial classification of the EEG when simultaneously collecting fMRI. We found tradeoffs across all three systems, for example varied ease of setup and improved classification accuracy with reference electrodes (REF) but not for pulse artifact subtraction (PAS) or reference layer adaptive filtering (RLAF).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا