ترغب بنشر مسار تعليمي؟ اضغط هنا

Gap Structure of the Overdoped Iron-Pnictide Superconductor Ba(Fe$_{0.942}$Ni$_{0.058}$)$_{2}$As$_{2}$: A Low-Temperature Specific-Heat Study

499   0   0.0 ( 0 )
 نشر من قبل Gang Mu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-temperature specific heat (SH) is measured on the postannealed Ba(Fe_{1-x}Ni_x)_2As_2 single crystal with x = 0.058 under different magnetic fields. The sample locates on the overdoped sides and the critical transition temperature is determined to be 14.8 K by both the magnetization and SH measurements. A simple and reliable analysis shows that, besides the phonon and normal electronic contributions, a clear T2 termemerges in the low temperature SH data.Our observation is similar to that observed in the Co-doped system in our previous work and is consistent with the theoretical prediction for a superconductor with line nodes in the energy gap.



قيم البحث

اقرأ أيضاً

343 - Gang Mu , Jun Tang , Yoichi Tanabe 2011
Low-temperature specific heat is measured on the overdoped Ba(Fe_{1-x}Co_x)_2As_2 (x = 0.13) single crystal under magnetic fields along three different directions. A clear anisotropy is observed on the field dependent electronic specific heat coeffic ient {gamma}(H). The value of {gamma}(H) is obviously larger with magnetic field along [001] (c-axis) than that within the ab-plane of the crystal lattice, which cannot be attributed to the effect by anisotropy of the upper critical field. Meanwhile, the data show a rather small difference when the direction of the field is rotated from [100] to [110] direction within the ab-plane. Our results suggest that a considerable part of the line nodes is not excited to contribute to the quasiparticle density of states by the field when the field is within the ab-plane. The constraints on the topology of the gap nodes are discussed based on our observations.
272 - Gang Mu , Jun Tang , Yoichi Tanabe 2011
Low-temperature specific heat (SH) is measured on Ba(Fe$_{1-x}$Co$_{x}$)$_2$As$_2$ single crystals in a wide doping region under different magnetic fields. For the overdoped sample, we find the clear evidence for the presence of $T^2$ term in the dat a, which is absent both for the underdoped and optimal doped samples, suggesting the presence of line nodes in the energy gap of the overdoped samples. Moreover, the field induced electron specific heat coefficient $Deltagamma(H)$ increases more quickly with the field for the overdoped sample than the underdoped and optimal doped ones, giving another support to our arguments. Our results suggest that the superconducting gap(s) in the present system may have different structures strongly depending on the doping regions.
537 - T. Hajiri , T. Ito , M. Matsunami 2014
We observed the anisotropic superconducting-gap (SC-gap) structure of a slightly overdoped superconductor, Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ ($x=0.1$), using three-dimensional (3D) angle-resolved photoemission spectroscopy. Two hole Fermi surfaces (FSs) observed at the Brillouin zone center and an inner electron FS at the zone corner showed a nearly isotropic SC gap in 3D momentum space. However, the outer electron FS showed an anisotropic SC gap with nodes or gap minima around the M and A points. The different anisotropies obtained the SC gap between the outer and inner electron FSs cannot be expected from all theoretical predictions with spin fluctuation, orbital fluctuation, and both competition. Our results provide a new insight into the SC mechanisms of iron pnictide superconductors.
Here we present a combined study of the slightly underdoped novel pnictide superconductor Ba(1-x)K(x)Fe(2)As(2) by means of X-ray powder diffraction, neutron scattering, muon spin rotation (muSR), and magnetic force microscopy (MFM). Commensurate sta tic magnetic order sets in below Tm ~ 70 K as inferred from the emergence of the magnetic (1 0 -3) reflection in the neutron scattering data and from the observation of damped oscillations in the zero-field-muSR asymmetry. Transverse-field muSR below Tc shows a coexistence of magnetically ordered and non-magnetic states, which is also confirmed by MFM imaging. We explain such coexistence by electronic phase separation into antiferromagnetic and superconducting/normal state regions on a lateral scale of several tens of nanometers. Our findings indicate that such mesoscopic phase separation can be considered an intrinsic property of some iron pnictide superconductors.
The electronic structure and superconducting gap structure are prerequisites to establish microscopic theories in understanding the superconductivity mechanism of iron-based superconductors. However, even for the most extensively studied optimally-do ped (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$, there remain outstanding controversies on its electronic structure and superconducting gap structure. Here we resolve these issues by carrying out high-resolution angle-resolved photoemission spectroscopy (ARPES) measurements on the optimally-doped (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$ superconductor using both Helium lamp and laser light sources. Our results indicate the flat band feature observed around the Brillouin zone center in the superconducting state originates from the combined effect of the superconductivity-induced band back-bending and the folding of a band from the zone corner to the center. We found direct evidence of the band folding between the zone corner and the center in both the normal and superconducting state. Our resolution of the origin of the flat band makes it possible to assign the three hole-like bands around the zone center and determine their superconducting gap correctly. Around the zone corner, we observe a tiny electron-like band and an M-shaped band simultaneously in both the normal and superconducting states. The obtained gap size for the bands around the zone corner ($sim$5.5 meV) is significantly smaller than all the previous ARPES measurements. Our results establish a new superconducting gap structure around the zone corner and resolve a number of prominent controversies concerning the electronic structure and superconducting gap structure in the optimally-doped (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$. They provide new insights in examining and establishing theories in understanding superconductivity mechanism in iron-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا