ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic phase separation in the slightly underdoped iron pnictide superconductor Ba(1-x)K(x)Fe(2)As(2)

175   0   0.0 ( 0 )
 نشر من قبل Vladimir Hinkov
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we present a combined study of the slightly underdoped novel pnictide superconductor Ba(1-x)K(x)Fe(2)As(2) by means of X-ray powder diffraction, neutron scattering, muon spin rotation (muSR), and magnetic force microscopy (MFM). Commensurate static magnetic order sets in below Tm ~ 70 K as inferred from the emergence of the magnetic (1 0 -3) reflection in the neutron scattering data and from the observation of damped oscillations in the zero-field-muSR asymmetry. Transverse-field muSR below Tc shows a coexistence of magnetically ordered and non-magnetic states, which is also confirmed by MFM imaging. We explain such coexistence by electronic phase separation into antiferromagnetic and superconducting/normal state regions on a lateral scale of several tens of nanometers. Our findings indicate that such mesoscopic phase separation can be considered an intrinsic property of some iron pnictide superconductors.



قيم البحث

اقرأ أيضاً

We present x-ray powder diffraction (XRPD) and neutron diffraction measurements on the slightly underdoped iron pnictide superconductor Ba(1-x)K(x)Fe2As2, Tc = 32K. Below the magnetic transition temperature Tm = 70K, both techniques show an additiona l broadening of the nuclear Bragg peaks, suggesting a weak structural phase transition. However, macroscopically the system does not break its tetragonal symmetry down to 15 K. Instead, XRPD patterns at low temperature reveal an increase of the anisotropic microstrain proportionally in all directions. We associate this effect with the electronic phase separation, previously observed in the same material, and with the effect of lattice softening below the magnetic phase transition. We employ density functional theory to evaluate the distribution of atomic positions in the presence of dopant atoms both in the normal and magnetic states, and to quantify the lattice softening, showing that it can account for a major part of the observed increase of the microstrain.
536 - T. Hajiri , T. Ito , M. Matsunami 2014
We observed the anisotropic superconducting-gap (SC-gap) structure of a slightly overdoped superconductor, Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ ($x=0.1$), using three-dimensional (3D) angle-resolved photoemission spectroscopy. Two hole Fermi surfaces (FSs) observed at the Brillouin zone center and an inner electron FS at the zone corner showed a nearly isotropic SC gap in 3D momentum space. However, the outer electron FS showed an anisotropic SC gap with nodes or gap minima around the M and A points. The different anisotropies obtained the SC gap between the outer and inner electron FSs cannot be expected from all theoretical predictions with spin fluctuation, orbital fluctuation, and both competition. Our results provide a new insight into the SC mechanisms of iron pnictide superconductors.
We investigate magnetic ordering in metallic Ba[Fe(1-x)Mn(x)](2)As(2) and discuss the unusual magnetic phase, which was recently discovered for Mn concentrations x > 10%. We argue that it can be understood as a Griffiths-type phase that forms above t he quantum critical point associated with the suppression of the stripe-antiferromagnetic spin-density-wave (SDW) order in BaFe2As2 by the randomly introduced localized Mn moments acting as strong magnetic impurities. While the SDW transition at x = 0, 2.5% and 5% remains equally sharp, in the x = 12% sample we observe an abrupt smearing of the antiferromagnetic transition in temperature and a considerable suppression of the spin gap in the magnetic excitation spectrum. According to our muon-spin-relaxation, nuclear magnetic resonance and neutron-scattering data, antiferromagnetically ordered rare regions start forming in the x = 12% sample significantly above the Neel temperature of the parent compound. Upon cooling, their volume grows continuously, leading to an increase in the magnetic Bragg intensity and to the gradual opening of a partial spin gap in the magnetic excitation spectrum. Using neutron Larmor diffraction, we also demonstrate that the magnetically ordered volume is characterized by a finite orthorhombic distortion, which could not be resolved in previous diffraction studies most probably due to its coexistence with the tetragonal phase and a microstrain-induced broadening of the Bragg reflections. We argue that Ba[Fe(1-x)Mn(x)](2)As(2) could represent an interesting model spin-glass system, in which localized magnetic moments are randomly embedded into a SDW metal with Fermi surface nesting.
By means of infrared spectroscopy we determine the temperature-doping phase diagram of the Fano effect for the in-plane Fe-As stretching mode in Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_{2}$. The Fano parameter $1/q^2$, which is a measure of the phonon coupling to the electronic particle-hole continuum, shows a remarkable sensitivity to the magnetic/structural orderings at low temperatures. More strikingly, at elevated temperatures in the paramagnetic/tetragonal state we find a linear correlation between $1/q^2$ and the superconducting critical temperature $T_c$. Based on theoretical calculations and symmetry considerations, we identify the relevant interband transitions that are coupled to the Fe-As mode. In particular, we show that a sizable $xy$ orbital component at the Fermi level is fundamental for the Fano effect and possibly also for the superconducting pairing.
We used angle-resolved photoemission spectroscopy (ARPES) and density functional theory calculations to study the electronic structure of Ba(Fe1-x-yCoxMny)2As2 for x=0.06 and 0<=y <=0.07. From ARPES we derive that the substitution of Fe by Mn does no t lead to hole doping, indicating a localization of the induced holes. An evaluation of the measured spectral function does not indicate a diverging effective mass or scattering rate near optimal doping. Thus the present ARPES results indicate a continuous evolution of the quasiparticle interaction and therefore question previous quantum critical scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا