ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameterized Games and Parameterized Automata

61   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Arno Pauly




اسأل ChatGPT حول البحث

We introduce a way to parameterize automata and games on finite graphs with natural numbers. The parameters are accessed essentially by allowing counting down from the parameter value to 0 and branching depending on whether 0 has been reached. The main technical result is that in games, a player can win for some values of the parameters at all, if she can win for some values below an exponential bound. For many winning conditions, this implies decidability of any statements about a player being able to win with arbitrary quantification over the parameter values. While the result seems broadly applicable, a specific motivation comes from the study of chains of strategies in games. Chains of games were recently suggested as a means to define a rationality notion based on dominance that works well with quantitative games by Bassett, Jecker, P., Raskin and Van den Boogard. From the main result of this paper, we obtain generalizations of their decidability results with much simpler proofs. As both a core technical notion in the proof of the main result, and as a notion of potential independent interest, we look at boolean functions defined via graph game forms. Graph game forms have properties akin to monotone circuits, albeit are more concise. We raise some open questions regarding how concise they are exactly, which have a flavour similar to circuit complexity. Answers to these questions could improve the bounds in the main theorem.



قيم البحث

اقرأ أيضاً

Mean-payoff games on timed automata are played on the infinite weighted graph of configurations of priced timed automata between two players, Player Min and Player Max, by moving a token along the states of the graph to form an infinite run. The goal of Player Min is to minimize the limit average weight of the run, while the goal of the Player Max is the opposite. Brenguier, Cassez, and Raskin recently studied a variation of these games and showed that mean-payoff games are undecidable for timed automata with five or more clocks. We refine this result by proving the undecidability of mean-payoff games with three clocks. On a positive side, we show the decidability of mean-payoff games on one-clock timed automata with binary price-rates. A key contribution of this paper is the application of dynamic programming based proof techniques applied in the context of average reward optimization on an uncountable state and action space.
An average-time game is played on the infinite graph of configurations of a finite timed automaton. The two players, Min and Max, construct an infinite run of the automaton by taking turns to perform a timed transition. Player Min wants to minimise t he average time per transition and player Max wants to maximise it. A solution of average-time games is presented using a reduction to average-price game on a finite graph. A direct consequence is an elementary proof of determinacy for average-time games. This complements our results for reachability-time games and partially solves a problem posed by Bouyer et al., to design an algorithm for solving average-price games on priced timed automata. The paper also establishes the exact computational complexity of solving average-time games: the problem is EXPTIME-complete for timed automata with at least two clocks.
This volume contains the proceedings of the 11th International Symposium on Games, Automata, Logic and Formal Verification (GandALF 2020). The symposium took place as a fully online event on September 21-22, 2020. The GandALF symposium was establishe d by a group of Italian computer scientists interested in mathematical logic, automata theory, game theory, and their applications to the specification, design, and verification of complex systems. Its aim is to provide a forum where people from different areas, and possibly with different backgrounds, can fruitfully interact. GandALF has a truly international spirit, as witnessed by the composition of the program and steering committee and by the country distribution of the submitted papers.
75 - Edon Kelmendi 2016
Two-player, turn-based, stochastic games with reachability conditions are considered, where the maximizer has no information (he is blind) and is restricted to deterministic strategies whereas the minimizer is perfectly informed. We ask the question of whether the game has maxmin 1, in other words we ask whether for all $epsilon>0$ there exists a deterministic strategy for the (blind) maximizer such that against all the strategies of the minimizer, it is possible to reach the set of final states with probability larger than $1-epsilon$. This problem is undecidable in general, but we define a class of games, called leaktight half-blind games where the problem becomes decidable. We also show that mixed strategies in general are stronger for both players and that optimal strategies for the minimizer might require infinite-memory.
We study a class of games, in which the adversary (attacker) is to satisfy a complex mission specified in linear temporal logic, and the defender is to prevent the adversary from achieving its goal. A deceptive defender can allocate decoys, in additi on to defense actions, to create disinformation for the attacker. Thus, we focus on the problem of jointly synthesizing a decoy placement strategy and a deceptive defense strategy that maximally exploits the incomplete information the attacker about the decoy locations. We introduce a model of hypergames on graphs with temporal logic objectives to capture such adversarial interactions with asymmetric information. Using the hypergame model, we analyze the effectiveness of a given decoy placement, quantified by the set of deceptive winning states where the defender can prevent the attacker from satisfying the attack objective given its incomplete information about decoy locations. Then, we investigate how to place decoys to maximize the defenders deceptive winning region. Considering the large search space for all possible decoy allocation strategies, we incorporate the idea of compositional synthesis from formal methods and show that the objective function in the class of decoy allocation problem is monotone and non-decreasing. We derive the sufficient conditions under which the objective function for the decoy allocation problem is submodular, or supermodular, respectively. We show a sub-optimal allocation can be efficiently computed by iteratively composing the solutions of hypergames with a subset of decoys and the solution of a hypergame given a single decoy. We use a running example to illustrate the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا