ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Dephasing of a Solid-State Quantum Emitter via Time- and Temperature- Dependent Hong-Ou-Mandel Experiments

55   0   0.0 ( 0 )
 نشر من قبل Tobias Heindel
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We probe the indistinguishability of photons emitted by a semiconductor quantum dot (QD) via time- and temperature- dependent two-photon interference (TPI) experiments. An increase in temporal-separation between consecutive photon emission events, reveals a decrease in TPI visibility on a nanosecond timescale, theoretically described by a non-Markovian noise process in agreement with fluctuating charge-traps in the QDs vicinity. Phonon-induced pure dephasing results in a decrease in TPI visibility from $(96pm4),$% at 10,K to a vanishing visibility at 40,K. In contrast to Michelson-type measurements, our experiments provide direct access to the time-dependent coherence of a quantum emitter at a nanosecond timescale.

قيم البحث

اقرأ أيضاً

We report direct evidence of the bosonic nature of surface plasmon polaritons (SPPs) in a scattering-based beamsplitter. A parametric down-conversion source is used to produce two indistinguishable photons, each of which is converted into a SPP on a metal-stripe waveguide and then made to interact through a semi-transparent Bragg mirror. In this plasmonic analog of the Hong-Ou-Mandel experiment, we measure a coincidence dip with a visibility of 72%, a key signature that SPPs are bosons and that quantum interference is clearly involved.
Hong-Ou-Mandel (HOM) interference, i.e. the bunching of indistinguishable photons at a beam splitter is a staple of quantum optics and lies at the heart of many quantum sensing approaches and recent optical quantum computers. Although originally prop osed as a method for sensing micron-scale variations in photon propagation path lengths and despite the detection of photon bunching using camera technologies, the technique is still to be extended to the imaging domain. We report a full-field, scan-free, quantum imaging technique that exploits HOM interference to reconstruct the surface depth profile of transparent samples. We measure both the bunched and anti-bunched photon-pair distributions at the HOM interferometer output which are combined to provide a lower-noise image of the sample. This approach demonstrates the possibility of HOM microscopy as a tool for label-free imaging of transparent samples in the very low photon regime.
We provide a statistically robust and accurate framework to measure and track the polarisation state of light employing Hong-Ou-Mandel interference. This is achieved by combining the concepts of maximum likelihood estimation and Fisher information ap plied to photon detection events. Such an approach ensures that the Cramer-Rao bound is saturated and changes to the polarisation state are established in an optimal manner. Using this method, we show that changes in the linear polarisation state can be measured with 0.6 arcminute precision (0.01 degrees).
181 - A. Ferreri , V. Ansari , B. Brecht 2020
The phenomenon of entanglement is the basis of quantum information and quantum communication processes. Entangled systems with a large number of photons are of great interest at present because they provide a platform for streaming technologies based on photonics. In this paper we present a device which operates with four-photons and based on the Hong-Ou-Mandel (HOM) interference. The presented device allows to maximize the degree of spatial entanglement and generate the highly entangled four-dimensional Bell states. Furthermore, the use of the interferometer in different regimes leads to fast interference fringes in the coincidence probability with period of oscillations twice smaller than the pump wavelength. We have a good agreement between theoretical simulations and experimental results.
We report on the observation of a high visibility Hong-Ou-Mandel interference of two heralded photons emitted from a spontaneous parametric down conversion~(SPDC) pumped by continuous-wave~(cw) light. A non-degenerate photon pair at 1541~nm and 1580~ nm is generated by cw-pumped SPDC through a periodically poled lithium niobate waveguide. The heralded single photon at 1541~nm is prepared by the detection of the photon at 1580~nm. We performed the experiment of the Hong-Ou-Mandel interference between heralded single photons in separated time bins and observed a high visibility interference. All detectors we used are superconducting nanowire single-photon detectors and an overall temporal resolution of the photon detection is estimated as 85 ps, which is sufficiently shorter than the coherence time of the heralded photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا