ترغب بنشر مسار تعليمي؟ اضغط هنا

Eigenvalues and Eigenfunctions of Two Coupled Normal Metal Nano-rings

69   0   0.0 ( 0 )
 نشر من قبل Lei Fang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A general scheme is developed to deal with 1D lattice systems that could be topologically complicated. It is aimed to give a complete study of two coupled normal metal rings. Our method starts with an investigation of the local expressions of the eigenfunctions. By connecting different parts of the system, all the eigenvalues and eigenfunctions can be obtained. It is found that there is a possibility for the existence of localized states, which is beyond previous expectations.

قيم البحث

اقرأ أيضاً

We have measured the persistent current in individual normal metal rings over a wide range of magnetic fields. From this data, we extract the first six cumulants of the single-ring persistent current distribution. Our results are consistent with the theoretical prediction that this distribution should be nearly Gaussian (i.e., that these cumulants should be nearly zero) for diffusive metallic rings. This measurement highlights the particular sensitivity of persistent current to the mesoscopic fluctuations within a single coherent volume.
Quantum mechanics predicts that the equilibrium state of a resistive electrical circuit contains a dissipationless current. This persistent current has been the focus of considerable theoretical and experimental work, but its basic properties remain a topic of controversy. The main experimental challenges in studying persistent currents have been the small signals they produce and their exceptional sensitivity to their environment. To address these issues we have developed a new technique for detecting persistent currents which offers greatly improved sensitivity and reduced measurement back action. This allows us to measure the persistent current in metal rings over a wider range of temperature, ring size, and magnetic field than has been possible previously. We find that measurements of both a single ring and arrays of rings agree well with calculations based on a model of non-interacting electrons.
We study transport properties of a phosphorene monolayer in the presence of single and multiple potential barriers of height $U_0$ and width $d$, using both continuum and microscopic lattice models, and show that the nature of electron transport alon g its armchair edge ($x$ direction) is qualitatively different from its counterpart in both conventional two-dimensional electron gas with Schrodinger-like quasiparticles and graphene or surfaces of topological insulators hosting massless Dirac quasiparticles. We show that the transport, mediated by massive Dirac electrons, allows one to achieve collimated quasiparticle motion along $x$ and thus makes monolayer phosphorene an ideal experimental platform for studying Klein paradox. We study the dependence of the tunneling conductance $G equiv G_{xx}$ as a function of $d$ and $U_0$, and demonstrate that for a given applied voltage $V$ its behavior changes from oscillatory to decaying function of $d$ for a range of $U_0$ with finite non-zero upper and lower bounds, and provide analytical expression for these bounds within which $G$ decays with $d$. We contrast such behavior of $G$ with that of massless Dirac electrons in graphene and also with that along the zigzag edge ($y$ direction) in phosphorene where the quasiparticles obey an effective Schrodinger equation at low energy. We also study transport through multiple barriers along $x$ and demonstrate that these properties hold for transport through multiple barrier as well. Finally, we suggest concrete experiments which may verify our theoretical predictions.
We theoretically study transport properties of voltage-biased one-dimensional superconductor--normal metal--superconductor tunnel junctions with arbitrary junction transparency where the superconductors can have trivial or nontrivial topology. Motiva ted by recent experimental efforts on Majorana properties of superconductor-semiconductor hybrid systems, we consider two explicit models for topological superconductors: (i) spinful p-wave, and (ii) spin-split spin-orbit-coupled s-wave. We provide a comprehensive analysis of the zero-temperature dc current $I$ and differential conductance $dI/dV$ of voltage-biased junctions with or without Majorana zero modes (MZMs). The presence of an MZM necessarily gives rise to two tunneling conductance peaks at voltages $eV = pm Delta_{mathrm{lead}}$, i.e., the voltage at which the superconducting gap edge of the lead aligns with the MZM. We find that the MZM conductance peak probed by a superconducting lead $without$ a BCS singularity has a non-universal value which decreases with decreasing junction transparency. This is in contrast to the MZM tunneling conductance measured by a superconducting lead $with$ a BCS singularity, where the conductance peak in the tunneling limit takes the quantized value $G_M = (4-pi)2e^2/h$ independent of the junction transparency. We also discuss the subharmonic gap structure, a consequence of multiple Andreev reflections, in the presence and absence of MZMs. Finally, we show that for finite-energy Andreev bound states (ABSs), the conductance peaks shift away from the gap bias voltage $eV = pm Delta_{mathrm{lead}}$ to a larger value set by the ABSs energy. Our work should have important implications for the extensive current experimental efforts toward creating topological superconductivity and MZMs in semiconductor nanowires proximity coupled to ordinary s-wave superconductors.
90 - Gael Reecht 2013
Structural and electronic properties of oligothiophene nano-wires and rings synthesized on a Au(111) surface are investigated by scanning tunneling microscopy. The spectroscopic data of the linear and cyclic oligomers show remarkable differences whic h, to a first approximation, can be accounted by considering electronic states confinement to one-dimensional (1D) boxes having respectively fixed and periodic boundary conditions. A more detailed analysis shows that polythiophene must be treated as a ribbon (i.e. having an effective width) rather than a purely 1D structure. A fascinating consequence is that the molecular nano-rings act as whispering gallery mode resonators for electrons, opening the way for new applications in quantum-electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا