ﻻ يوجد ملخص باللغة العربية
We report the results of our observations of the S255IR area with the SMA at 1.3 mm in the very extended configuration and at 0.8 mm in the compact configuration as well as with the IRAM-30m at 0.8 mm. The best achieved angular resolution is about 0.4 arcsec. The dust continuum emission and several tens of molecular spectral lines are observed. The majority of the lines is detected only towards the S255IR-SMA1 clump, which represents a rotating structure (probably disk) around the young massive star. The achieved angular resolution is still insufficient for conclusions about Keplerian or non-Keplerian character of the rotation. The temperature of the molecular gas reaches 130-180 K. The size of the clump is about 500 AU. The clump is strongly fragmented as follows from the low beam filling factor. The mass of the hot gas is significantly lower than the mass of the central star. A strong DCN emission near the center of the hot core most probably indicates a presence of a relatively cold ($lesssim 80$ K) and rather massive clump there. High velocity emission is observed in the CO line as well as in lines of high density tracers HCN, HCO+, CS and other molecules. The outflow morphology obtained from combination of the SMA and IRAM-30m data is significantly different from that derived from the SMA data alone. The CO emission detected with the SMA traces only one boundary of the outflow. The outflow is most probably driven by jet bow shocks created by episodic ejections from the center. We detected a dense high velocity clump associated apparently with one of the bow shocks. The outflow strongly affects the chemical composition of the surrounding medium.
We describe the general structure of the well known S255IR high mass star forming region, as revealed by our recent ALMA observations. The data indicate a physical relation of the major clumps SMA1 and SMA2. The driving source of the extended high ve
We investigate at a high angular resolution the spatial and kinematic structure of the S255IR high mass star-forming region, which demonstrated recently the first disk-mediated accretion burst in the massive young stellar object. The observations wer
Interferometric observations of the W33A massive star-formation region, performed with the Submillimeter Array (SMA) and the Very Large Array (VLA) at resolutions from 5 arcsec (0.1 pc) to 0.5 arcsec (0.01 pc) are presented. Our three main findings a
Aims: We resolve the small-scale structure around the high-mass hot core region G351.77-0.54 to investigate its disk and fragmentation properties. Methods: Using ALMA at 690GHz with baselines exceeding 1.5km, we study the dense gas, dust and outflo
Intermediate mass protostarsprovide a bridge between theories of low- and high-mass star formation. Emerging molecular outflows can be used to determine the influence of fragmentation and multiplicity on protostellar evolution through the correlation