ترغب بنشر مسار تعليمي؟ اضغط هنا

Outflow forces in intermediate mass star formation

65   0   0.0 ( 0 )
 نشر من قبل Tim van Kempen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Intermediate mass protostarsprovide a bridge between theories of low- and high-mass star formation. Emerging molecular outflows can be used to determine the influence of fragmentation and multiplicity on protostellar evolution through the correlation of outflow forces of intermediate mass protostars with the luminosity. The aim of this paper is to derive outflow forces from outflows of six intermediate mass protostellar regions and validate the apparent correlation between total luminosity and outflow force seen in earlier work, as well as remove uncertainties caused by different methodology. By comparing CO 6--5 observations obtained with APEX with non-LTE radiative transfer model predictions, optical depths, temperatures, densities of the gas of the molecular outflows are derived. Outflow forces, dynamical timescales and kinetic luminosities are subsequently calculated. Outflow parameters, including the forces, were derived for all sources. Temperatures in excess of 50 K were found for all flows, in line with recent low-mass results. However, comparison with other studies could not corroborate conclusions from earlier work on intermediate mass protostars which hypothesized that fragmentation enhances outflow forces in clustered intermediate mass star formation. Any enhancement in comparison with the classical relation between outflow force and luminosity can be attributed the use of a higher excitation line and improvement in methods; They are in line with results from low-mass protostars using similar techniques. The role of fragmentation on outflows is an important ingredient to understand clustered star formation and the link between low and high-mass star formation. However, detailed information on spatial scales of a few 100 AU, covering all individual members is needed to make the necessary progress.

قيم البحث

اقرأ أيضاً

We report multi-epoch VLBI H$_2$O maser observations towards the compact cluster of YSOs close to the Herbig Be star LkH$alpha$ 234. This cluster includes LkH$alpha$ 234 and at least nine more YSOs that are formed within projected distances of $sim$1 0 arcsec ($sim$9,000 au). We detect H$_2$O maser emission towards four of these YSOs. In particular, our VLBI observations (including proper motion measurements) reveal a remarkable very compact ($sim$0.2 arcsec = $sim$180 au), bipolar H$_2$O maser outflow emerging from the embedded YSO VLA 2. We estimate a kinematic age of $sim$40 yr for this bipolar outflow, with expanding velocities of $sim$20 km s$^{-1}$ and momentum rate $dot M_w V_w$ $simeq$ $10^{-4}-10^{-3}$ M$_{odot}$ yr$^{-1}$ km s$^{-1}$$times (Omega$/$4pi)$, powered by a YSO of a few solar masses. We propose that the outflow is produced by recurrent episodic jet ejections associated with the formation of this YSO. Short-lived episodic ejection events have previously been found towards high-mass YSOs. We show now that this behaviour is also present in intermediate-mass YSOs. These short-lived episodic ejections are probably related to episodic increases in the accretion rate, as observed in low-mass YSOs. We predict the presence of an accretion disk associated with VLA 2. If detected, this would represent one of the few known examples of intermediate-mass stars with a disk-YSO-jet system at scales of a few hundred au.
83 - Jonathan C. Tan 2015
I review theoretical models of star formation and how they apply across the stellar mass spectrum. Several distinct theories are under active study for massive star formation, especially Turbulent Core Accretion, Competitive Accretion and Protostella r Mergers, leading to distinct observational predictions. These include the types of initial conditions, the structure of infall envelopes, disks and outflows, and the relation of massive star formation to star cluster formation. Even for Core Accretion models, there are several major uncertainties related to the timescale of collapse, the relative importance of different processes for preventing fragmentation in massive cores, and the nature of disks and outflows. I end by discussing some recent observational results that are helping to improve our understanding of these processes.
We present an evolutionary sequence of models of the photoionized disk-wind outflow around forming massive stars based on the Core Accretion model. The outflow is expected to be the first structure to be ionized by the protostar and can confine the e xpansion of the HII region, especially in lateral directions in the plane of the accretion disk. The ionizing luminosity increases as Kelvin-Helmholz contraction proceeds, and the HII region is formed when the stellar mass reaches ~10-20Msun depending on the initial cloud core properties. Although some part of outer disk surface remains neutral due to shielding by the inner disk and the disk wind, almost the whole of the outflow is ionized in 1e3-1e4 yr after initial HII region formation. Having calculated the extent and temperature structure of the HII region within the immediate protostellar environment, we then make predictions for the strength of its free-free continuum and recombination line emission. The free-free radio emission from the ionized outflow has a flux density of ~(20-200)x(nu/10GHz)^p mJy for a source at a distance of 1 kpc with a spectral index p~0.4-0.7, and the apparent size is typically ~500AU at 10GHz. The H40alpha line profile has a width of about 100km/s. These properties of our model are consistent with observed radio winds and jets around forming massive protostars.
Understanding how young stars and their circumstellar disks form and evolve is key to explain how planets form. The evolution of the star and the disk is regulated by different processes, both internal to the system or related to their environment. T he former include accretion of material onto the central star, wind emission, and photoevaporation of the disk due to high-energy radiation from the central star. These are best studied spectroscopically, and the distance to the star is a key parameter in all these studies. Here we present new estimates of the distance to a complex of nearby star-forming clouds obtained combining TGAS distances with measurement of extinction on the line of sight. Furthermore, we show how we plan to study the effects of the environment on the evolution of disks with Gaia, using a kinematic modelling code we have developed to model young star-forming regions.
We have observed the very low-mass Class 0 protostar IRAS 15398-3359 at scales ranging from 50 au to 1800 au, as part of the ALMA Large Program FAUST. We uncover a linear feature, visible in H2CO, SO, and C18O line emission, which extends from the so urce along a direction almost perpendicular to the known active outflow. Molecular line emission from H2CO, SO, SiO, and CH3OH further reveals an arc-like structure connected to the outer end of the linear feature and separated from the protostar, IRAS 15398-3359, by 1200 au. The arc-like structure is blue-shifted with respect to the systemic velocity. A velocity gradient of 1.2 km/s over 1200 au along the linear feature seen in the H2CO emission connects the protostar and the arc-like structure kinematically. SO, SiO, and CH3OH are known to trace shocks, and we interpret the arc-like structure as a relic shock region produced by an outflow previously launched by IRAS 15398-3359. The velocity gradient along the linear structure can be explained as relic outflow motion. The origins of the newly observed arc-like structure and extended linear feature are discussed in relation to turbulent motions within the protostellar core and episodic accretion events during the earliest stage of protostellar evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا