ترغب بنشر مسار تعليمي؟ اضغط هنا

Momentum distribution of Cooper-pairs and strong-coupling effects in a two-dimensional Fermi gas near the Berezinskii-Kosterlitz-Thouless transition

97   0   0.0 ( 0 )
 نشر من قبل Morio Matsumoto
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate strong-coupling properties of a two-dimensional ultracold Fermi gas in the normal state. Including pairing fluctuations within the framework of a $T$-matrix approximation, we calculate the distribution function $n({boldsymbol Q})$ of Cooper pairs in terms of the center of mass momentum ${boldsymbol Q}$. In the strong-coupling regime, $n({boldsymbol Q}=0)$ is shown to exhibit a remarkable increase with decreasing the temperature in the low temperature region, which agrees well with the recent experiment on a two-dimensional $^6$Li Fermi gas [M. G. Ries, {it et. al.}, Phys. Rev. Lett. {bf 114}, 230401 (2015)]. Our result indicates that the observed remarkable increase of the number of Cooper pairs with zero center of mass momentum can be explained without assuming the Berezinskii-Kosterlitz-Thouless (BKT) transition, when one properly includes pairing fluctuations that are enhanced by the low-dimensionality of the system. Since the BKT transition is a crucial topic in two-dimensional Fermi systems, our results would be useful for the study toward the realization of this quasi-long-range order in an ultracold Fermi gas.



قيم البحث

اقرأ أيضاً

152 - M. Matsumoto , , Y. Ohashi 2014
We investigate single-particle excitations and strong-coupling effects in a two-dimensional Fermi gas. Including pairing fluctuations within a Gaussian fluctuation theory, we calculate the density of states $rho(omega)$ near the Berezinskii-Kosterlit z-Thouless (BKT) transition temperature $T_{rm BKT}$. Near $T_{rm BKT}$, we show that superfluid fluctuations induce a pseudogap in $rho(omega)$. The pseudogap structure is very similar to the BCS superfluid density of states, although the superfluid order parameter is absent in the present two-dimensional case. Since a two-dimensional $^{40}$K Fermi gas has recently been realized, our results would contribute to the understanding of single-particle properties near the BKT instability.
We experimentally investigate the first-order correlation function of a trapped Fermi gas in the two-dimensional BEC-BCS crossover. We observe a transition to a low-temperature superfluid phase with algebraically decaying correlations. We show that t he spatial coherence of the entire trapped system can be characterized by a single temperature-dependent exponent. We find the exponent at the transition to be constant over a wide range of interaction strengths across the crossover. This suggests that the phase transitions in both the bosonic regime and the strongly interacting crossover regime are of Berezinskii-Kosterlitz-Thouless-type and lie within the same universality class. On the bosonic side of the crossover, our data are well-described by Quantum Monte Carlo calculations for a Bose gas. In contrast, in the strongly interacting regime, we observe a superfluid phase which is significantly influenced by the fermionic nature of the constituent particles.
198 - Shaoyu Yin , J.-P. Martikainen , 2013
We study the superfluid properties of two-dimensional spin-population-imbalanced Fermi gases to explore the interplay between the Berezinskii-Kosterlitz-Thouless (BKT) phase transition and the possible instability towards the Fulde-Ferrell (FF) state . By the mean-field approximation together with quantum fluctuations, we obtain phase diagrams as functions of temperature, chemical potential imbalance and binding energy. We find that the fluctuations change the mean-field phase diagram significantly. We also address possible effects of the phase separation and/or the anisotropic FF phase to the BKT mechanism. The superfluid density tensor of the FF state is obtained, and its transverse component is found always vanishing. This causes divergent fluctuations and possibly precludes the existence of the FF state at any non-zero temperature.
82 - H Chamati , S Romano 2007
We have considered two classical lattice-gas models, consisting of particles that carry multicomponent magnetic momenta, and associated with a two-dimensional square lattices; each site can host one particle at most, thus implicitly allowing for hard -core repulsion; the pair interaction, restricted to nearest neighbors, is ferromagnetic and involves only two components. The case of zero chemical potential has been investigated by Grand--Canonical Monte Carlo simulations; the fluctuating occupation numbers now give rise to additional fluid-like observables in comparison with the usual saturated--lattice situation; these were investigated and their possible influence on the critical behaviour was discussed. Our results show that the present model supports a Berezinskii-Kosterlitz-Thouless phase transition with a transition temperature lower than that of the saturated lattice counterpart due to the presence of ``vacancies; comparisons were also made with similar models studied in the literature.
We observe quasi-long range coherence in a two-dimensional condensate of exciton-polaritons. Our measurements are the first to confirm that the spatial correlation algebraically decays with a slow power-law, whose exponent quantitatively behaves as p redicted by the Berezinskii-Kosterlitz-Thouless theory. The exciton-polaritons are created by non-resonant optical pumping of a micro-cavity sample with embedded GaAs quantum-wells at liquid helium temperature. Michelson interference is used to measure the coherence of the photons emitted by decaying exciton-polaritons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا