ﻻ يوجد ملخص باللغة العربية
We introduce the new notion of convolution of a (smooth or generalized) valuation on a group $G$ and a valuation on a manifold $M$ acted upon by the group. In the case of a transitive group action, we prove that the spaces of smooth and generalized valuations on $M$ are modules over the algebra of compactly supported generalized valuations on $G$ satisfying some technical condition of tameness. The case of a vector space acting on itself is studied in detail. We prove explicit formulas in this case and show that the new convolution is an extension of the convolution on smooth translation invariant valuations introduced by J.~Fu and the second named author.
We survey recent results in hermitian integral geometry, i.e. integral geometry on complex vector spaces and complex space forms. We study valuations and curvature measures on complex space forms and describe how the global and local kinematic formul
The dimensions of the spaces of $k$-homogeneous $mathrm{Spin}(9)$-invariant valuations on the octonionic plane are computed using results from the theory of differential forms on contact manifolds as well as octonionic geometry and representation the
A compact complex manifold $V$ is called Vaisman if it admits an Hermitian metric which is conformal to a Kahler one, and a non-isometric conformal action by $mathbb C$. It is called quasi-regular if the $mathbb C$-action has closed orbits. In this c
In this paper, we give a classification of all compact Hermitian manifolds with flat Bismut connection. We show that the torsion tensor of such a manifold must be parallel, thus the universal cover of such a manifold is a Lie group equipped with a bi
Given smooth manifolds $M_1,ldots, M_n$ (which may have a boundary or corners), a smooth manifold $N$ modeled on locally convex spaces and $alphain({mathbb N}_0cup{infty})^n$, we consider the set $C^alpha(M_1timescdotstimes M_n,N)$ of all mappings $f